• 4600W Grid-tied Solar PV Inverter  4600TLM System 1
  • 4600W Grid-tied Solar PV Inverter  4600TLM System 2
  • 4600W Grid-tied Solar PV Inverter  4600TLM System 3
4600W Grid-tied Solar PV Inverter  4600TLM

4600W Grid-tied Solar PV Inverter 4600TLM

Ref Price:
get latest price
Loading Port:
Shekou
Payment Terms:
TT or LC
Min Order Qty:
10 unit
Supply Capability:
99999 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

4600W Grid-tied Solar PV Inverter 4600TLM

 

4600TLM inverter High-yield

Max 97.6%efficiency

Real timeprecise MPPT algorithm for max harvest

Wide inputvoltage operation range from 100V to 550V

Two MPPtrackers for flexible PV panel configuration

 

4600TLM inverter Low maintenance cost

Rust-freealuminumcovers

Flexiblemonitoring solution

Multifunctionrelay can be configured to show various inverter information

 

4600TLM inverter Flexible and economicalsystem solution

Free siteselection due to IP65

Easy installationand maintenance due to “Plug & Play” connection

Interfaceselection-Wi-Fi/RS485/DryRelay for more flexible configuration and system monitoring

4” LCDdisplay

 

 

4600TLM inverter Intelligent grid management

Reactivepoweradjustable

Self powerreducerwhenover frequency

Remoteactive/reactivepower limit control

 

 4600TLM inverter datasheet

Technical Data

SOFAR

3000TLM

SOFAR

3680TLM

SOFAR

4000TLM

SOFAR

4600TLM

SOFAR

5000TLM

Input (DC)

Max. Input Power

3100W

3800W

4160W

4800W

5200W

Max. DC power for single MPPT

2000

(200V-500V)

2400

(200V-500V)

2600

(200V-500V)

3000

(200V-500V)

Number of independent MPPT

2

Number of DC inputs

1 for each MPPT

Max. Input Voltage

600V

Start-up input voltage

100V(+/-5V)

Rated input voltage

360V

Operating input voltage range

100V-550V

MPPT voltage range

160V-500V

165V-500V

175V-500V

Max. Input current per MPPT

10A/10A

12A/12A

13A/13A

15A/15A

Input short circuit current per MPPT

12A

14A

16A

18A

Output(AC)

Rated power(@230V,50Hz)

3000VA

3680VA

4000VA

4600VA

5000VA

Max. AC power

3000VA

3680VA

4000VA

4600VA

5000VA

Nominal AC voltage

L/N/PE, 220, 230, 240

Nominal AC voltage range

180V-270V

Grid frequency range

44~55Hz / 54~66Hz

Active power adjustable range

0~100%

Max. Output Current

13A

16A

17.5A

20A

22A

THDi

<3%

Power Factor

1(Adjustable +/-0.8)

Performance

Max efficiency

97.6%

Weighted eff.(EU/CEC)

97.1%/97.3%

Self-consumption at night

<1W

Feed-in start power

20W

MPPT efficiency

>99.5%

Protection

DC reverse polarity protection

Yes

DC switch

Optional

Protection class / overvoltage category

I/III

Input/output SPD(II)

Optional

Safety Protection

Anti-islanding, RCMU, Ground fault  monitoring

Certification

CE, CGC, AS4777, AS3100, VDE 4105,  C10-C11, G83/G59 (more available on request)

Communication

Power management unit

According to certification and request

Standard Communication Mode

Wifi+RS485

Operation Data Storage

25 years

General data

Ambient temperature range

-25℃ ~ +60℃

Topology

Transformerless

Degree of protection

IP65

Allowable relative humidity range

0 ~ 95% no condensing

Max. Operating Altitude

2000m

Noise

<25dB

Weight

18kg

Cooling

Nature

Dimension

344×478×165mm

Warranty

5 years

 

Solar panels

 

 

Certification

CNBM Solar strictly carries out the ISO 9001 quality control methodology and has implemented check points at every step of the production process to ensure our product performance durability and safety. The stringent quality control process has been confirmed by numerous independent agencies and LDK Solar modules earned IEC, TUV and UL certifications.

·         IEC:IEC 61215, IEC 61730 (1&2), conformity to CE

·         UL 1703 2002/03/15 Ed:3 Rev:2004/06/30

·         ULC/ORD-C1703-01 Second Edition 2001/01/01

·         UL and Canadian Standard for Safety Flat-Plate

·         ISO 9001: 2008 Quality Management Systems

·         CEC Listed: Modules are eligible for California Rebates

·         PV Cycle: Voluntary module take back and recycling program

·         MCS Certificate

 

 

FAQ

1.   How do I decide which system is right for me ?

For protection from long outages, include a generator or solar panels in your Must solar system. Shorter outages can be handled by a battery-only system.

2.    Where my system will be installed ?

Must solar systems are usually wall-mounted near a home's main electrical (circuit breaker) panel.

3. How do I install my system ?

A solar backup inverter is connected to a home electric system , we will supply detailed installation manual and videos for our customers .

 

Q:What is the role of a grid-tie inverter in a solar PV system?
The main purpose of a grid-tie inverter in a solar PV system is to convert the DC electricity produced by the solar panels into AC electricity that can be utilized to supply power to electrical devices in homes or businesses. In a solar PV system, the solar panels generate DC electricity when exposed to sunlight. However, most residential and commercial establishments require AC electricity, which is the standard form of electricity provided by utility companies. This is where the grid-tie inverter comes into play. The grid-tie inverter takes the DC electricity generated by the solar panels and transforms it into AC electricity that is compatible with the electrical grid. It ensures that the electricity produced by the solar panels is synchronized with the utility power and can be seamlessly integrated into the existing electrical system. One of the primary functions of a grid-tie inverter is to match the frequency, voltage, and phase of the AC electricity generated by the solar panels with that of the utility power. This synchronization is crucial to guarantee a smooth flow of electricity between the solar system and the grid, and to prevent any interruptions or harm to the electrical system. Furthermore, a grid-tie inverter also serves as a safety monitor for the electrical grid. It continuously checks for any voltage or frequency fluctuations in the grid and can automatically disconnect from the grid in case of a power outage or grid failure. This feature is important to ensure the safety of electrical workers who might be repairing the grid during an outage. Additionally, a grid-tie inverter enables net metering, which is a billing arrangement where surplus electricity generated by the solar system can be fed back into the grid. This means that if the solar system produces more electricity than is being consumed, the excess energy can be sent back to the grid and the homeowner or business owner can receive credits for the surplus energy produced. This can help offset energy costs and potentially result in financial savings. In conclusion, the grid-tie inverter plays a crucial role in a solar PV system by converting the DC electricity generated by the solar panels into AC electricity that can be used to power electrical devices, ensuring synchronization with the electrical grid, monitoring the grid for safety, and enabling net metering for potential financial benefits.
Q:How does a solar inverter handle voltage drops in the electrical wiring?
A solar inverter typically handles voltage drops in the electrical wiring by continuously monitoring the voltage levels and adjusting its own output accordingly. It is designed to maintain a steady voltage within a specified range, even if there are voltage drops in the wiring.
Q:How does a solar inverter handle voltage and frequency variations caused by load shedding?
A solar inverter handles voltage and frequency variations caused by load shedding by constantly monitoring the grid conditions. When it detects a drop in voltage or frequency, it adjusts its output parameters accordingly to maintain a stable supply of electricity to the connected loads. This ensures that the devices receiving power from the solar inverter are not affected by the fluctuations in the grid caused by load shedding.
Q:The working principle of photovoltaic grid - connected inverter
In the small-capacity inverter generally push-pull inverter circuit, full-bridge inverter circuit and high-frequency step-up inverter circuit three, push-pull circuit, the step-up transformer neutral plug connected to the positive power supply, two power Alternating current, the output to get AC power, due to the power transistor to ground, drive and control circuit is simple, and because the transformer has a certain leakage inductance, can limit the short circuit current, thus improving the reliability of the circuit. The disadvantage is the low utilization of the transformer, driving the emotional load is poor.
Q:How does the efficiency of a solar inverter affect the overall system performance?
The efficiency of a solar inverter plays a crucial role in the overall system performance. A higher efficiency inverter converts a greater percentage of the solar energy into usable electricity, resulting in increased energy production. This means that a more efficient inverter allows the system to generate more power, maximizing the overall performance and output of the solar system. Additionally, a higher efficiency inverter reduces energy losses, which can lead to improved system reliability and cost-effectiveness. Therefore, the efficiency of a solar inverter directly impacts the overall performance and effectiveness of the entire solar energy system.
Q:Can a solar inverter be used with building-integrated photovoltaics (BIPV)?
Yes, a solar inverter can be used with building-integrated photovoltaics (BIPV). In fact, a solar inverter is an essential component of any BIPV system as it converts the direct current (DC) generated by the BIPV panels into alternating current (AC) that can be used to power electrical devices in a building or fed back into the grid.
Q:What is the maximum AC current output of a solar inverter?
The maximum AC current output of a solar inverter depends on its size and rating. It can range from a few amps to several hundred amps, typically ranging between 5-100 amps for residential inverters and going up to higher currents for commercial or utility-scale inverters.
Q:How do you calculate the power output of a solar inverter?
To calculate the power output of a solar inverter, you need to multiply the DC input voltage by the DC input current to determine the input power. Then, subtract the inverter's efficiency percentage from 100, divide the input power by this efficiency factor, and you will obtain the power output of the solar inverter.
Q:What is the temperature range for optimal operation of a solar inverter?
The temperature range for optimal operation of a solar inverter is typically between -20°C to 50°C.
Q:What is the role of a solar inverter in grid management and stability?
The role of a solar inverter in grid management and stability is crucial in integrating solar power into the existing electrical grid system. Solar inverters are responsible for converting the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used by homes and businesses or fed back into the grid. In terms of grid management, solar inverters play a vital role in maintaining the stability and reliability of the electrical grid. They provide grid support functions such as voltage regulation, frequency control, and reactive power compensation. By monitoring the grid conditions and adjusting the output of solar power accordingly, inverters help to balance the supply and demand of electricity in real-time, ensuring grid stability. Solar inverters also contribute to grid stability by improving power quality. They actively filter out harmonics, voltage fluctuations, and other electrical disturbances that can be caused by the intermittent nature of solar power generation. This ensures that the electricity generated by solar panels is of high quality and does not introduce any disruptions or damage to the electrical grid. Furthermore, solar inverters enable the seamless integration of solar power into the grid, allowing excess energy to be fed back into the system. This is known as net metering or feed-in tariff programs, where solar energy producers can receive compensation for the surplus electricity they produce. With the help of inverters, the generated solar energy can be efficiently transferred to the grid, reducing the reliance on traditional fossil fuel-based power generation and promoting renewable energy integration. Overall, the role of a solar inverter in grid management and stability is to ensure the smooth integration and optimal utilization of solar power, while maintaining the stability, reliability, and quality of the electrical grid. It acts as a bridge between solar energy producers and the grid, facilitating the efficient and sustainable integration of renewable energy sources into the existing power infrastructure.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords