• 240 Volt PV Grid-Tied Solar Inverter 3000TL Competitive Price System 1
  • 240 Volt PV Grid-Tied Solar Inverter 3000TL Competitive Price System 2
  • 240 Volt PV Grid-Tied Solar Inverter 3000TL Competitive Price System 3
240 Volt PV Grid-Tied Solar Inverter 3000TL Competitive Price

240 Volt PV Grid-Tied Solar Inverter 3000TL Competitive Price

Ref Price:
get latest price
Loading Port:
Shekou
Payment Terms:
TT or LC
Min Order Qty:
10 unit
Supply Capability:
99999 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

PV Grid-tied Solar Inverter 3000TL Competitive Price

 

High-yield

Max 97.1%efficiency

Real timeprecise MPPT algorithm for max harvest

Wide inputvoltage operation range from 90V to 500V

 

All in one. Flexible and economicalsystem solution

Free siteselection due to IP65

Easy installationand maintenance due to “Plug & Play” connection

Interfaceselection-Wi-Fi/ RS485 / Dry Relay for more flexible

configurationandsystem monitoring

4” LCDdisplay

 

 

PV Grid-tied Solar Inverter 3000TL

 

Low maintenance cost

Rust-freealuminumcovers

Flexiblemonitoring solution

Multifunctionrelay can be configured to show various inverter information

 

Intelligent gridmanagement

Reactivepowercapability

Self powerreduce when over frequency

Remoteactive/reactivepower limit control


 

PV Grid-tied Solar Inverter 3000TL Datasheet

Technical Data

SOFAR

1100TL

SOFAR

1600TL

SOFAR

2200TL

SOFAR

2700TL

SOFAR

3000TL

Input (DC)

Max. Input Power

1100W

1600W

2200W

2700W

3000W

No. of MPPT / String per MPPT

1/1

Max. Input voltage

450V

450V

500V

500V

500V

Max. Input Voltage

80V

Rated input voltage

360V

Operating input voltage range

90V-400V

100V-480V

MPPT voltage range

110V-380V

165V-380V

170-450V

210-450V

230V-450V

Max. Input current per MPPT

10A

13A

Input short circuit current per MPPT

12A

15A

Output(AC)

Rated power(@230V,50Hz)

1000VA

1500VA

2000VA

2500VA

2800VA

Max. AC power

1000VA

1500VA

2000VA

2500VA

2800VA

Max. AC Output Current

4.5A

7A

9.5A

11.5A

13A

Rated Grid Voltage

230V

Nominal Grid Voltage Range

180V-270V(According to local standard)

Rated Frequency

50Hz / 60Hz

Grid frequency Range

44~55 / 54~66Hz(According to local  standard)

THDi

<3%

Power factor Adjustable Range

0.8 over excited … 0.8 under excited

Grid connection

Single phase

Efficiency

Max. efficiency

97%

97.1%

Weighted eff.(EU/CEC)

96%

96.2%

96.3%

MPPT efficiency

>99.5%

Standard

EMC

EN 61000-6-1, EN 61000-6-2, EN 61000-6-3,  EN 61000-6-4

RSSR

IEC 62109-1, IEC 62109-2

Grid Standards

AS4777, VDE4105, C10-C11, G83/G59 (more  available on request)

Protection

Anti-Islanding Protection

Yes

DC reverse polarity protection

Yes

Over Temp Protection

Yes

Leakage Current Protection

Yes

Over Voltage Protection

Yes

Over Current Protection

Yes

Earth Fault Protection

Yes

Communication

Standard Communication Mode

Wifi+RS485

Operation Data Storage

25 years

Relay

Yes

I/O

Yes

General data

DC Switch

optional

Ambient temperature range

-25℃ ~ +60℃

Topology

Transformerless

Cooling

Nature

Allowable relative humidity range

0 ~ 95% no condensing

Max. Operating Altitude

2000m

Noise

<35dB @1m

Degree of Protection

(per IEC 60529)

IP65

Dimension

400*310*130mm

Weight

11kg

12kg

Self-consumption at night

0

Display

Graphic display

Warranty

5 years


 

 

Q: What is the maximum temperature range for a solar inverter?
The maximum temperature range for a solar inverter typically varies between -25°C to 60°C (-13°F to 140°F), although it can vary depending on the specific model and manufacturer.
Q: Can a solar inverter be used with a solar-powered air conditioner?
Yes, a solar inverter can be used with a solar-powered air conditioner. A solar inverter is responsible for converting the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used to power appliances. In the case of a solar-powered air conditioner, the solar inverter would be essential for converting the DC electricity generated by the solar panels into AC electricity to run the air conditioner.
Q: Can a solar inverter be used with a solar-powered educational system?
Yes, a solar inverter can be used with a solar-powered educational system. A solar inverter is a device that converts the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power various electrical devices. In the case of a solar-powered educational system, the solar inverter would play a crucial role in converting the DC power generated by the solar panels into usable AC power for running electronic equipment such as computers, projectors, and other educational tools.
Q: What is the role of a solar inverter in a solar-powered ventilation system?
The role of a solar inverter in a solar-powered ventilation system is to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity, which is the type of electricity used in most household appliances. This conversion allows the ventilation system to effectively utilize the solar energy and power the fans, motors, or other components of the system.
Q: Can a solar inverter be upgraded or expanded in the future?
Yes, a solar inverter can be upgraded or expanded in the future. Upgrading or expanding a solar inverter typically involves adding additional capacity or features to the existing system. This can be done by adding more panels, batteries, or upgrading the inverter itself to accommodate increased power output. However, it is important to ensure compatibility and consult with a professional to assess the feasibility and requirements of any upgrades or expansions.
Q: Can a solar inverter be used in countries with different electrical standards?
Yes, a solar inverter can be used in countries with different electrical standards. However, it may require certain modifications or adjustments to ensure compatibility with the local electrical infrastructure. Additionally, the input voltage and frequency of the solar inverter may need to be adjusted accordingly. It is important to consult with local experts or electricians to ensure proper installation and compliance with the electrical standards of the country.
Q: How does the voltage regulation affect the performance of a solar inverter?
Voltage regulation is crucial for the optimal performance of a solar inverter. It ensures that the output voltage of the inverter remains within a specific range, typically the utility grid's voltage standards. Proper voltage regulation prevents overloading or underloading of the electrical devices connected to the inverter, safeguarding them from potential damage. Additionally, maintaining a stable output voltage enhances the efficiency and reliability of the solar inverter, allowing it to deliver consistent power to the connected load and maximize the overall system performance.
Q: How does a solar inverter handle frequency fluctuations in the grid?
A solar inverter handles frequency fluctuations in the grid by continuously monitoring the frequency of the grid and adjusting its own output accordingly. If the grid frequency increases, the inverter reduces its output to maintain stability. Conversely, if the grid frequency decreases, the inverter increases its output to help stabilize the grid. This way, the solar inverter actively contributes to maintaining a stable frequency in the grid.
Q: What is the maximum efficiency of a solar inverter?
The maximum efficiency of a solar inverter refers to the highest level of energy conversion achieved by the inverter, typically expressed as a percentage. It represents the amount of solar energy that is successfully converted into usable electricity by the inverter. The maximum efficiency can vary depending on the specific model and technology used, but modern solar inverters can typically achieve efficiencies ranging from 95% to 98%.
Q: Can a solar inverter be used with a three-phase electrical system?
Yes, a solar inverter can be used with a three-phase electrical system. In fact, many commercial and industrial solar installations use three-phase inverters to convert the direct current (DC) power generated by solar panels into alternating current (AC) power that can be used by the electrical grid. This allows for efficient power conversion and distribution in three-phase systems, which are commonly used in larger electrical installations.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords