• On Grid Solar Inverter GS4200-DS System 1
  • On Grid Solar Inverter GS4200-DS System 2
  • On Grid Solar Inverter GS4200-DS System 3
On Grid Solar Inverter GS4200-DS

On Grid Solar Inverter GS4200-DS

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
10 unit
Supply Capability:
100 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

GW4200-DS

 

GW4200-DS photovoltaic inverter is suitable for home rooftop photovoltaic system, designed under modern industrial concept. There are three colors for option with fashionable appearance. This model uses advanced digital control technology and communication method as well as super MPP tracking and security technology. It has a wide range of input and output voltage. To ensure its stability and long service life, our inverter is manufactured with optimum quality components. It holds a safe lead among the same level of products.

DC Input DataMax.PV-generator power[W]4600
Max.DC power each MPPT[W]2500
Max.DC voltage[V]580
MPPT voltage range[V]125~550
Turn on DC voltage[V]125

Max.DC work current[A]

2*15
Number of inputs/MPP trackers4/2(can parrallel)
DC connectorMC IV connector
Self-energy consumption[W]<5< td="">
AC Output DataNominal AC power[W]4200
Max.AC power[W]4400
Max.output current[A]21
Nominal output voltage rangeAccording to VDE-AR-N 4105, RD1663, ENEL, G59,SAA
AC grid frequencyAccording to VDE-AR-N 4105, RD1663, ENEL, G59,SAA
THDi〈2%
Power factor0.95 leading...0.95 lagging
AC connectionSingle phase
EfficiencyMax.efficiency97.8%
European efficiency97.4%
MPPT adaptation efficiency>99.5%
Safty EquipmentLeakage current monitoring unitIntegrated
DC switch disconnectorOptional
Islanding protectionAFD
Grid monitoring

According to VDE-AR-N 4105,AS4777.1/2/3, RD1663,

ENEL,G59-2

Normative ReferenceEMC complianceEN 61000-6-1,EN 61000-6-2, EN 61000-6-3,EN 61000-6-4
Safety complianceAccording to IEC 62109-1,AS3100
General DataDimensions(W*H*D) [mm]390*417*165
Net weight [kg]20
HousingFor outdoor and indoor
Mounting informationWall mounting
Operating temperature range-20~60℃(up 45℃ derating)
Relative humidity0 ~ 95%
Site altitude[m]2000
IP proection classIP65
TopologyTransformerless
CoolingNature Convection
Noise level[dB]〈25
Display4" LCD
CommunicationUSB2.0;RS485(Wireless/Bluetooth optional)
Standard warranty[years]5/10(optional)

 

Q:Can a solar inverter be used with a net metering system?
Yes, a solar inverter can be used with a net metering system. In fact, a solar inverter is a crucial component of a net metering system. It helps convert the direct current (DC) electricity produced by the solar panels into alternating current (AC) electricity that can be used to power homes or businesses. The excess electricity generated by the solar panels is then fed back into the grid through the net meter, allowing consumers to receive credits or compensation for the surplus energy they produce.
Q:What are the key safety features to look for in a solar inverter?
The key safety features to look for in a solar inverter include overvoltage protection, ground fault protection, arc fault protection, and rapid shutdown capability. These features help ensure the safe and efficient operation of the solar system, protecting against electrical hazards and reducing the risk of fire or injury.
Q:What is the maximum AC output current that a solar inverter can provide?
The maximum AC output current that a solar inverter can provide depends on its specifications and capacity. Different models and brands may have varying maximum AC output current ratings, typically ranging from a few amps to several hundred amps. It is important to consult the specific technical specifications of a particular solar inverter to determine its maximum AC output current capacity.
Q:Can a solar inverter be used with a solar water pumping system?
Yes, a solar inverter can be used with a solar water pumping system. A solar inverter is responsible for converting the DC power generated by solar panels into AC power that can be used to operate various appliances or systems. In the case of a solar water pumping system, the solar inverter converts the DC power from the solar panels into AC power to run the pump, enabling the system to function effectively.
Q:Can a solar inverter be connected to a home automation system?
Yes, a solar inverter can be connected to a home automation system. This integration allows for better control and monitoring of the solar energy production and enables homeowners to optimize their energy usage based on real-time data.
Q:Can a solar inverter be used in remote areas?
Yes, a solar inverter can be used in remote areas. Solar inverters are commonly used in off-grid systems to convert the DC power generated by solar panels into AC power that can be used for various applications. These systems are particularly beneficial in remote areas where access to the electricity grid is limited or non-existent. By harnessing solar energy, a solar inverter can provide reliable and sustainable power to remote communities, powering homes, schools, clinics, and other essential infrastructure.
Q:How does a solar inverter handle variations in AC load demand?
A solar inverter handles variations in AC load demand by constantly monitoring the load and adjusting the output power accordingly. It uses advanced control algorithms to regulate the voltage and frequency of the AC output to match the specific requirements of the connected devices. This allows the inverter to effectively handle fluctuations in load demand and ensure a stable power supply.
Q:What is the role of a voltage regulation feature in a solar inverter?
The role of a voltage regulation feature in a solar inverter is to ensure that the output voltage remains stable and within a specified range, regardless of fluctuations in the input voltage from the solar panels. This feature helps to protect the connected appliances and devices from damage due to overvoltage or undervoltage, and also optimizes the efficiency and performance of the solar inverter system.
Q:How does a solar inverter handle voltage regulation during high demand?
A solar inverter handles voltage regulation during high demand by constantly monitoring the grid voltage and adjusting its output accordingly. When there is high demand, the inverter ramps up its power output to ensure that the voltage remains stable and within the acceptable range. It does so by regulating the reactive power flow and employing advanced control algorithms to maintain grid stability.
Q:What is the standby power consumption of a solar inverter?
The standby power consumption of a solar inverter refers to the amount of power that the inverter consumes when it is in standby mode or not actively converting solar energy into usable electricity. This power consumption is generally very low, typically ranging from 1 to 5 watts, as the inverter only needs to maintain its internal circuitry and monitor the solar energy availability.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords