• Solar Inverter Fan - On-grid Inverter with Energy Storage 2000W System 1
  • Solar Inverter Fan - On-grid Inverter with Energy Storage 2000W System 2
  • Solar Inverter Fan - On-grid Inverter with Energy Storage 2000W System 3
  • Solar Inverter Fan - On-grid Inverter with Energy Storage 2000W System 4
Solar Inverter Fan - On-grid Inverter with Energy Storage 2000W

Solar Inverter Fan - On-grid Inverter with Energy Storage 2000W

Ref Price:
get latest price
Loading Port:
Shenzhen
Payment Terms:
TT or LC
Min Order Qty:
1 Unit pc
Supply Capability:
8000 Units/month pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description of On-Grid Inverter With Energy Storage 2000W

1.Pure sine wave output

2.Microprocessor controlled to guarantee stable charging system

3.Multiple operations: Grid tie, Off grid, and grid tie with backup

4.Built-in MPPT solar charger

5.LCD display panel for comprehensive information

6.Multiple communication

7.Green substitution for generators

8.User adjustable charging current up to 25A

 

Feed-in is not only choice

In comparison with conventional grid-tie inverter, CNBM hybrid inverter is able to not only feed-in power to grid but also store solar power to battery for future usage and directly power to the loads.

On-Grid Inverter With Energy Storage 2000W

 

Save money by discharging battery for self-consumption first

CNBM hybrid inverter can save money by using battery energy first when PV energy is low. Until battery energy is low, CNBM will extract AC power from the grid.

On-Grid Inverter With Energy Storage 2000W

 

Power backup when AC failed

CNBM hybrid inverter can operate as an off-grid inverter to provide continuous power even without the grid.

It's perfect power solution for remote regions or temporary AC power source such as camping or flea market.

On-Grid Inverter With Energy Storage 2000W 

 

Datasheet of On-Grid Inverter With Energy Storage 2000W

 

MODEL

CNBM-H 2KW

CNBM-H 3KW

RATED POWER

2000W

3000W

GRID-TIE OPERATION

PV INPUT (DC)

Maximum DC power

2250W

3200W

Nominal DC voltage / Maximum DC voltage

300 VDC / 350VDC

360 VDC / 500VDC

Start voltage / Initial Feeding Voltage

80 VDC / 120VDC

116 VDC / 150 VDC

MPP voltage range

150 VDC ~ 320 VDC

250 VDC ~ 450 VDC

Number of MPP Trackers / Max. input current

1 / 1×15A

1 / 1×13A

GRID OUTPUT (AC)

Nominal Output Voltage

101/110/120/127 VAC

208/220/230/240 VAC

Output Voltage Range

88 - 127 VAC

184 – 264.5 VAC

Nominal Output Current

18 A

13.1 A

Power Factor

> 0.99

EFFICIENCY

Maximum Conversion Efficiency (DC/AC)

95%

96%

European Efficiency@ Vnominal

94%

95%

OFF-GRID OPERATION

AC INPUT

AC Startup Voltage / Auto Restart Voltage

60 - 70 VAC / 85VAC

120 - 140 VAC / 180VAC

Acceptable Input Voltage Range

85 - 130 VAC

170 - 280 VAC

Maximum AC Input Current

30A

25A

PV INPUT (DC)

Maximum DC voltage

350 VAC

500 VAC

MPP Voltage Range

150 VAC ~ 320 VDC

250 VAC ~ 450 VDC

Maximum Input Current

1 / 1×15A

1 / 1×13A

BATTERY MODE OUTPUT (AC)

Nominal Output Voltage

101/110/120/127 VAC

208/220/230/240 VAC

Output Frequency

50 Hz / 60 Hz (auto sensing)

Output Waveform

Pure sine wave

Efficiency (DC to AC)

90%

93%

HYBRID OPERATION

PV INPUT (DC)

Nominal DC voltage / Maximum DC voltage

300 VDC / 350VDC

360 VDC / 500VDC

Start voltage / Initial Feeding Voltage

80 VDC / 120VDC

116 VDC / 150 VDC

MPP voltage range

150 VDC ~ 320 VDC

250 VDC ~ 450 VDC

Maximum Input Current

1 / 1×15A

1 / 1×13A

GRID OUTPUT (AC)

Nominal Output Voltage

101/110/120/127 VAC

208/220/230/240 VAC

Output Voltage Range

88 - 127 VAC

184 – 264.5 VAC

Nominal Output Current

18 A

13.1 A

AC INPUT

AC Startup Voltage / Auto Restart Voltage

60 - 70 VAC / 85VAC

120 - 140 VAC / 180VAC

Acceptable Input Voltage Range

85 - 130 VAC

170 - 280 VAC

Maximum AC Input Current

30A

25A

BATTERY MODE OUTPUT (AC)

Nominal Output Voltage

101/110/120/127 VAC

208/220/230/240 VAC

Efficiency (DC to AC)

90%

93%

BATTERY & CHARGER

Nominal DC Voltage

48 VDC

Maximum Charging Current

25A

GENERAL

PHYSICAL

Dimension, D X W X H (mm)

420 x 415 x 170

Net Weight (kgs)

15.5

INTERFACE

Communication Port

RS-232 / USB

Intelligent Slot

Optional SNMP, Modbus, and AS400 cards available

ENVIRONMENT

Humidity

0 ~ 90% RH (No condensing)

Operating Temperature

0 to 40°C

Altitude

0 ~ 1000 m

COMPLIANCE

Standard

CE, VDE 0126-1-1,VDE-AR-N 4105

 

Q: What is the role of a solar inverter in a solar-powered water purification system?
The role of a solar inverter in a solar-powered water purification system is to convert the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power the water purification system. It also ensures the optimal utilization of solar energy by regulating the voltage and frequency of the electricity produced, making it compatible with the requirements of the water purification system.
Q: How does MPPT technology work in solar inverters?
MPPT technology, or Maximum Power Point Tracking, is utilized in solar inverters to optimize the energy output of photovoltaic systems. It works by continuously tracking the maximum power point of the solar panel array, which is the voltage and current combination that allows the panels to generate the maximum power. The MPPT algorithm adjusts the operating voltage and current of the solar panels to match the optimal point, ensuring that the maximum amount of power is extracted from the solar array and converted efficiently by the inverter. By constantly adapting to changing environmental conditions, MPPT technology maximizes the solar energy harvest, improving system efficiency and overall performance.
Q: Can a solar inverter be used with a string inverter system?
No, a solar inverter cannot be directly used with a string inverter system. A solar inverter converts the direct current (DC) generated by the solar panels into usable alternating current (AC) electricity. On the other hand, a string inverter manages the output of multiple solar panels connected in series, converting the DC power from the panels to AC power for the grid. These two types of inverters serve different functions and are not compatible with each other.
Q: What is the role of a solar inverter in voltage support?
The role of a solar inverter in voltage support is to convert the direct current (DC) generated by solar panels into alternating current (AC) that is compatible with the electrical grid. Additionally, it helps regulate the voltage levels to ensure a steady and consistent supply of electricity to the grid, thereby supporting voltage stability.
Q: What is the maximum number of parallel inverters that can be connected?
The maximum number of parallel inverters that can be connected depends on various factors such as the design and capacity of the inverters, the load being powered, and the electrical infrastructure. However, in general, there is no fixed maximum number as long as the inverters are properly sized, synchronized, and connected in a well-designed electrical system.
Q: Can a solar inverter be used for commercial-scale solar installations?
Yes, a solar inverter can be used for commercial-scale solar installations. In fact, commercial-scale solar installations often require multiple solar inverters to convert the DC power generated by the solar panels into usable AC power for commercial use. These inverters are designed to handle the higher power output and voltage levels typically found in larger solar installations.
Q: Can a solar inverter be used with a solar-powered desalination system?
Yes, a solar inverter can be used with a solar-powered desalination system. A solar inverter is responsible for converting the direct current (DC) electricity produced by solar panels into alternating current (AC) electricity that can be used to power electrical devices. In the case of a solar-powered desalination system, the solar inverter would be essential to convert the DC electricity generated by the solar panels into AC electricity to power the desalination equipment and ensure the system functions properly.
Q: How does a solar inverter handle voltage regulation during high demand?
A solar inverter handles voltage regulation during high demand by adjusting the power output from the solar panels to match the required load. It constantly monitors the voltage and current levels and adjusts its operation accordingly to ensure a stable and regulated output voltage. This is achieved through various control mechanisms, such as maximum power point tracking and voltage regulation algorithms, allowing the inverter to efficiently manage and distribute power during periods of high demand.
Q: Can a solar inverter be connected to a computer or smartphone?
Yes, a solar inverter can be connected to a computer or smartphone. Many modern solar inverters are equipped with built-in Wi-Fi or Bluetooth capabilities, allowing them to connect to local networks. This enables users to monitor and control their solar system's performance and settings conveniently through dedicated software applications or web interfaces on their computers or smartphones.
Q: What is the role of a power factor controller in a solar inverter?
The role of a power factor controller in a solar inverter is to regulate and maintain the power factor of the inverter's output. It ensures that the inverter's output power is in phase with the grid voltage, maximizing the efficiency of power transfer and reducing reactive power losses. By improving the power factor, the power factor controller helps to ensure stable and reliable operation of the solar inverter while meeting grid requirements and minimizing energy wastage.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords