• Grade EN10346-DX51D+Z Galvanized Steel Coil System 1
  • Grade EN10346-DX51D+Z Galvanized Steel Coil System 2
  • Grade EN10346-DX51D+Z Galvanized Steel Coil System 3
  • Grade EN10346-DX51D+Z Galvanized Steel Coil System 4
  • Grade EN10346-DX51D+Z Galvanized Steel Coil System 5
  • Grade EN10346-DX51D+Z Galvanized Steel Coil System 6
Grade EN10346-DX51D+Z Galvanized Steel Coil

Grade EN10346-DX51D+Z Galvanized Steel Coil

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
3 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel,Spring Steel,Bearing Steel,Gear Steel,Deformed Steel,Stainless Steel,Alloy Steel
Shape:
Steel Coil,Steel Sheet,Steel Wire Rod,Steel Flat Bar,Steel Square Bar,Steel Angle,Steel Round Bar,Steel Billets
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Thickness:
600-1570mm
Width:
600-1570mm
Length:
in coils
Outer Diameter:
in coils
Net Weight:
10m.t.
Packaging:
seaworthy packaging

Grade EN10346-DX51D+Z Galvanized Steel Coil

 Specification of Grade EN10346-DX51D+Z Galvanized Steel Coil

1. Galvanized Steel Coil    

    (1) Width: 600-1570mm

    (2) Thickness: 0.13-5.0mm

    (3) Grade: JIS G3302-SGCC-SGC570, SGCH (full hard-G550), SGHC-SGH540

                        EN10346-DX51D+Z, DX53D+Z, S250GD-S550GD

                        STM A653-CS-B, SS255-SS550

    (4) Zinc Coating: Z40g/m2~Z500g/m2 (both side total coating thickness)

2. Galvalume Steel Coil 

    (1) Width: 600~1500mm

    (2) Thickness: 0.15~2.30mm

    (3) Grade: JIS G3321-SGLCC, SGLC400-570, (G550)

                       EN10346-DX51D+AZ, DX53D+AZ, S250-S550

                      ASTM A792M CS-B, SS255-SS550

    (4) AZ Coating: AZ50~AZ185g/m2

3. Prepainted Galvanized Steel Coil (PPGI) 

    (1) Width: 600~1250mm

    (2) Thickness: 0.19~1.50mm

    (3) Grade: JIS G3312-CGCC, CGC340-570, (G550)

                      ASTM A755M CS-B, SS255-SS550

    (4) Zinc Coating: Z40g/m2~Z500g/m2 (both side total coating thickness)

4. Prepainted Galvanized Steel Coil (PPGL)

    (1) Width: 600~1250mm

    (2) Thickness: 0.20~1.50mm

    (3) Grade: JIS G3322-CGLCC, CGLC340-570, (G550)

                      ASTM A755M CS-B, SS255-SS550

    (4) AZ Coating: AZ50~AZ185g/m2 (both side total coating thickness)

5. Cold Rolled Steel Coil (Soft) (for further information, pls click the product name)

    (1) Width: 600~1570mm

    (2) Thickness: 0.13~2.50mm

    (3) Grade: JIS G3141-SPCC-SD, SPCD-SD, SPEC-SD

                      JIS G3135-SPFC 340/390/440

                      EN10130-DC01, DC03, DC04

                      SAE1006, SAE1008

                      ASTM A424-TypeⅡ

6. Cold Rolled Steel Coil (Full Hard) (for further information, pls click the product name)

    (1) Width: 600~1570mm

    (2) Thickness: 0.13~2.50mm

    (3) Grade: JIS G3141-SPCC-1B, SPCC-1D

7. Hot Rolled Steel Coil 

    (1) Width: 1000~1524mm

    (2) Thickness: 1.20~16.5mm, other thickness can be negotiation

    (3) Grade: JIS G3101-SS400, JIS G3132-SPHT1/2/3, ASTM A36, Q195, Q235 etc.

 

Company Introduction of the Grade EN10346-DX51D+Z Galvanized Steel Coil

CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.

With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.

Grade EN10346-DX51D+Z Galvanized Steel Coil

Grade EN10346-DX51D+Z Galvanized Steel Coil

 

Packaging & Delivery of the Grade EN10346-DX51D+Z Galvanized Steel Coil

Packaging Detail

Sea worthy packing /as per customer's packing instruction

Delivery Detail

15 ~ 40 days after receiving the deposit

 

Products Show:

Grade EN10346-DX51D+Z Galvanized Steel Coil

FAQ:   

Are you a trading company or manufacturer?

Manufacturer

What’s the MOQ?

3 metric ton

What’s your delivery time? 

15-35 days after downpayment received

Do you Accept OEM service?

Yes

what’s your delivery terms?

FOB/CFR/CIF

What's the Payment Terms?

30% as deposit,70% before shipment by T/T

Western Union acceptable for small amount.

L/C acceptable for large amount.

Scrow ,Paybal,Alipay are also ok

Why  choose  us?

Chose happens because of quality, then price, We can give you both.

Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals.

What's your available port of Shipment?

Main Port, China

What’s your featured  services?

Our service formula: good quality+ good price+ good service=customer's trust

 

Where are your Market?

Covering more than 160 countries in the world

 

Q: What are the main applications of special steel in the power distribution industry?
Special steel is extensively used in the power distribution industry for various applications. Some of the main applications include manufacturing of transmission towers, electrical poles, and conductors. Special steel's high strength, durability, and corrosion resistance make it ideal for these critical components, ensuring reliable power transmission and distribution infrastructure. Additionally, special steel is used in the production of electrical transformers, switchgear components, and power generation equipment, further enhancing the efficiency and reliability of the power distribution systems.
Q: What are the main factors affecting the strength of special steel?
The main factors affecting the strength of special steel include the composition of the steel, the heat treatment process, and the presence of any impurities or defects in the material. Additionally, the grain size and structure of the steel, as well as the presence of any alloying elements or treatments, can also impact its strength.
Q: How does special steel contribute to improving product lifespan?
Special steel contributes to improving product lifespan by offering enhanced strength, durability, and resistance to corrosion. Its unique composition and manufacturing processes result in a material that can withstand harsh conditions, heavy loads, and wear and tear over an extended period. This increased longevity and reliability of products made with special steel ultimately leads to reduced maintenance costs, less frequent replacements, and improved customer satisfaction.
Q: How does special steel contribute to national security?
National security is significantly enhanced by special steel, which serves various purposes. Firstly, it is extensively utilized in the production of military equipment and weapons. Tanks, armored vehicles, submarines, and aircraft carriers require special steel due to its exceptional strength, resilience, and resistance to corrosion. Incorporating special steel into military applications ensures the durability and reliability of these vital defense systems, ultimately strengthening national security. Secondly, special steel plays a pivotal role in the construction of critical infrastructure. Bridges, tunnels, and buildings, which are essential for a nation's functioning and security, rely on special steel. Its unparalleled strength and ability to withstand extreme conditions make it a crucial material for structures that must endure natural disasters, terrorist attacks, or other security threats. By incorporating special steel into infrastructure projects, a nation can fortify its security and safeguard its citizens. Additionally, special steel is of utmost importance in the energy sector, particularly within nuclear power plants. Special steel alloys are employed in the construction of reactor vessels and other components that encounter high temperatures and pressures. The utilization of special steel ensures the integrity and safety of these critical facilities, mitigating the risk of potential nuclear accidents that could pose significant threats to national security. Lastly, special steel contributes to national security by supporting the defense industry and fostering technological advancements. Research and development in special steel alloys often lead to breakthroughs in material engineering, which can have broader applications beyond defense. These advancements stimulate innovation in sectors such as aerospace, automotive, and energy, thereby augmenting a nation's overall technological capabilities and economic competitiveness. In conclusion, special steel's contribution to national security is multifaceted. Its incorporation in military equipment, critical infrastructure, nuclear power plants, and technological advancements all play a pivotal role in safeguarding a nation's interests, protecting its citizens, and maintaining its strategic advantage in an increasingly turbulent world.
Q: What are the common challenges in casting special steel?
Casting special steel can pose several challenges due to its unique properties and composition. Some of the common challenges in casting special steel include: 1. High melting point: Special steels often have higher melting points compared to regular carbon steels. This requires the use of specialized equipment and techniques to achieve the required temperature for casting. 2. Alloying elements: Special steels often contain alloying elements such as chromium, nickel, molybdenum, or vanadium. These elements enhance the steel's properties but can also increase the complexity of the casting process. Proper control and understanding of the alloying elements are necessary to ensure the desired mechanical properties in the final product. 3. Oxidation and decarburization: During the casting process, special steel can be susceptible to oxidation and decarburization. The high temperatures and exposure to oxygen can result in surface defects and loss of carbon content, which can compromise the steel's strength and hardness. Careful control of the casting parameters, such as atmosphere and mold design, is necessary to minimize these issues. 4. Shrinkage and porosity: Special steels often have a higher shrinkage rate during solidification compared to regular steels. This can result in shrinkage defects and porosity within the castings. Proper gating and riser design, as well as the use of suitable feeding systems, are crucial to mitigate these issues and ensure sound castings. 5. Thermal stresses: Special steels may exhibit higher thermal expansion coefficients, which can lead to significant thermal stresses during the cooling and solidification process. These stresses can cause cracking and distortion in the castings. Proper design considerations, such as the use of chills or controlled cooling techniques, are essential to minimize thermal stress and maintain dimensional stability. 6. Machinability: Special steels, particularly those with high alloy content, can be challenging to machine due to their hardness and toughness. Casting defects such as inclusions, segregations, or non-uniform microstructure can further complicate the machining process. Proper selection of cutting tools and machining parameters is necessary to achieve the desired dimensional accuracy and surface finish. In summary, casting special steel presents several challenges related to high melting points, alloying elements, oxidation, shrinkage, porosity, thermal stresses, and machinability. Overcoming these challenges requires a thorough understanding of the material properties, precise process control, and the implementation of appropriate casting techniques.
Q: Can special steel be used in cryogenic applications?
Indeed, cryogenic applications can utilize special steel. In particular, austenitic stainless steels like 304 or 316 are frequently employed in cryogenic settings because of their remarkable mechanical attributes and ability to withstand low temperatures. These steels maintain their strength, toughness, and ductility even in exceedingly cold environments, rendering them suitable for cryogenic use. Furthermore, special steels also exhibit commendable resistance to corrosion and thermal expansion, which are crucial considerations in cryogenic applications. In summary, special steel alloys possess a distinctive combination of properties that make them highly suitable for withstanding and functioning in extremely frigid conditions.
Q: What are the specific requirements for special steel used in the nuclear waste storage industry?
The specific requirements for special steel used in the nuclear waste storage industry are stringent and critical for ensuring the safety and long-term viability of the storage facilities. These requirements are primarily driven by the need to mitigate the potential risks associated with nuclear waste, such as radiation leakage and corrosion. One of the key requirements is high strength and durability. Special steel used in nuclear waste storage must have exceptional mechanical properties to withstand the weight and pressure exerted by the waste containers and the surrounding environment. This includes resistance to deformation, fracture, and fatigue, as well as the ability to maintain its structural integrity over an extended period. Another crucial requirement is excellent corrosion resistance. Nuclear waste contains highly corrosive substances that can degrade regular steel over time. Therefore, special steel used in the nuclear waste storage industry must have enhanced corrosion resistance to ensure long-term durability and prevent leakage of radioactive materials. Moreover, the steel must have a low susceptibility to stress corrosion cracking (SCC). SCC occurs when a combination of tensile stress, corrosive environment, and specific material conditions result in crack initiation and propagation. Given the potential consequences of a breach in the storage facility, the steel used must be highly resistant to SCC to ensure the integrity of the containers and minimize the risk of leakage. Radiation resistance is also a critical requirement for special steel used in nuclear waste storage. The steel should exhibit minimal degradation or embrittlement when exposed to high levels of radiation. This is essential to maintain the structural integrity of the storage containers and prevent any weakening that could compromise the containment of the waste. Additionally, the special steel used in the nuclear waste storage industry must comply with strict regulatory standards and certifications. It must meet specific design codes and guidelines set by regulatory authorities to ensure compliance with safety regulations and minimize potential hazards. In summary, the specific requirements for special steel used in the nuclear waste storage industry include high strength, durability, corrosion resistance, low susceptibility to stress corrosion cracking, radiation resistance, and compliance with regulatory standards. These requirements are crucial for maintaining the safety and integrity of the storage facilities and preventing any leakage or release of radioactive materials into the environment.
Q: How is special steel used in the manufacturing of tools and dies?
Special steel is used in the manufacturing of tools and dies due to its exceptional properties, such as high strength, hardness, and wear resistance. These steels can withstand extreme temperatures and pressures during the forming, cutting, and shaping processes. They also have excellent dimensional stability, ensuring precise and accurate tooling. Special steel's unique composition and heat treatment capabilities allow for the production of durable and long-lasting tools and dies, which are essential for various industries like automotive, aerospace, and manufacturing.
Q: How does special steel respond to welding?
Special steel, also known as alloy steel, typically responds well to welding. Its composition, which includes various alloying elements, enhances its weldability and allows for strong and reliable weld joints. However, the specific response to welding can vary depending on the type and grade of special steel. It is crucial to choose the appropriate welding technique, filler material, and heat treatment to ensure optimal results and minimize any potential issues such as cracking or distortion.
Q: How does the cost of special steel compare to regular steel?
Compared to regular steel, special steel generally has a higher cost. Special steel is designed and produced specifically to possess exceptional properties and characteristics that regular steel lacks. It goes through additional processes, such as alloying, heat treatment, or specialized manufacturing techniques, to enhance its strength, durability, corrosion resistance, and other desirable features. These additional production steps contribute to the overall increased cost of special steel. On the contrary, regular steel is more easily obtainable and produced on a larger scale. It is commonly used for general purposes and applications where high-performance qualities are not necessary. Regular steel is relatively cheaper due to its lower production costs and wider availability in the market. However, it is important to consider that the cost comparison between special steel and regular steel can vary based on several factors, including the specific type of steel, the quantity being purchased, market conditions, and any additional customization required. Therefore, it is advisable to consult steel suppliers or specialists for accurate pricing information tailored to specific requirements.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords