• Grade AISI52100/JIS52100 Bearing Steel Round Bar System 1
  • Grade AISI52100/JIS52100 Bearing Steel Round Bar System 2
  • Grade AISI52100/JIS52100 Bearing Steel Round Bar System 3
  • Grade AISI52100/JIS52100 Bearing Steel Round Bar System 4
  • Grade AISI52100/JIS52100 Bearing Steel Round Bar System 5
Grade AISI52100/JIS52100 Bearing Steel Round Bar

Grade AISI52100/JIS52100 Bearing Steel Round Bar

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
30 m.t
Supply Capability:
10000 m.t/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Bearing Steel
Shape:
Steel Round Bar

 Specification of Round Bar

1, Dimention of 52100 Alloy Steel

Round bar

Diameter(mm)

Length (mm)

20~800

3000~9000

Plate

Thickness(mm) 

Width (mm)  

Length (mm)   

Max:800

Max:2200

Max:9000

The specification can be customized.

 2, Chemical Compositions (%)

Grade

C

Si

Mn

P

S

Cr

Mo

Ni

GCr15

0.95-1.05

0.15-0.35

0.25-0.45

≤0.025

≤0.025

1.40-1.65

≤0.10

≤0.30

E52100

0.93-1.05

0.15-0.35

0.25-0.45

≤0.025

≤0.015

1.35-1.60

≤0.10

≤0.25

SUJ2

0.95-1.10

0.15-0.35

≤0.50

≤0.025

≤0.025

1.30-1.60

≤0.08

≤0.25

100Cr6

0.93-1.05

0.15-0.35

0.25-0.45

≤0.025

≤0.015

1.35-1.60

0.1

 

3, Features of  52100 alloy steel

1, High carbon alloy steel

2, High degree of hardness

3, Good compressive strength and abrasion resistance

4, Typical Applications 

1, Taps, gauges, swaging dies, ejector pins

2, Ball and roller bearings

3, Machine parts and for press tools

 

Our Featured Products

Alloy steel: Combination of steel / Bearing steel// Spring steel/ Cr- mo steel

GB 20Cr/ 40Cr / 42CrMo / 35CrMo/ 20CrMn/GCr15/30CrMnTi…

ASTM 5120 /5140 / 4140/ 4135/ 5152/52100…

JIS SCr420H/ SCr440/ SCM3/ SUP9/SUJ2…

 

Carbon steel: Carbon tool steel /Carbon Structural Steel

GB 20/ 35 /45/…

ASTM 1020/ 1030/1045…

JIS S20C/ S30C / S45C…

 

Usage and Applications of Round Bar

1. Chinese standard steel bar is often used where large amounts of steel need to be formed, for example as structural steel.

2. And we can use this kind of product on the performance of the mechanical parts if the demand is not very high.

3. Steel round bar is used in construction and a large number of architectural and engineering structures.

 

Packaging & Delivery of Round Bar

Packaging Detail: All goods are packed in bundle with steel strips and shipped by break bulk vessel or container (depend on target market and different ports)

Delivery Detail: 15~45 days

Trade terms: FOB, CFR, CIF

 

MOQ: 30 metric tons per specification; we can negotiate the quantity if the specification is normal or we have stock of one specification.

Weight: Theprice invoicing on theoretical weight basis or actual weight basis depends on customer’s request.

Shipment: The shipment of bulk break or container is depends on customer’s request and the situation of the port of destination.

Documents given: Full set of original clean on board bill of lading; Original signed commercial invoice; Original packing list; Policy of insurance; Certificate of origin and what the target market needs.

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q4: What makes stainless steel stainless?

A4: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

Q5: Can stainless steel rust?

A5: Stainless does not "rust" as you think of regular steel rusting with a red oxide on the surface that flakes off. If you see red rust it is probably due to some iron particles that have contaminated the surface of the stainless steel and it is these iron particles that are rusting. Look at the source of the rusting and see if you can remove it from the surface.

Grade AISI52100/JIS52100 Bearing Steel Round Bar

Grade AISI52100/JIS52100 Bearing Steel Round Bar

Q: What are the applications of special steel in the oil and gas industry?
Special steel is widely used in the oil and gas industry due to its exceptional properties such as high corrosion resistance, strength, and durability. It is primarily utilized in the construction of pipelines, drill bits, and various equipment used in oil and gas exploration, extraction, and refining processes. Additionally, special steel is employed in the manufacturing of storage tanks, valves, and offshore platforms, providing reliable solutions for harsh operating conditions and ensuring the safety and efficiency of oil and gas operations.
Q: How does special steel contribute to the weldability of products?
Special steel contributes to the weldability of products in several ways. Firstly, special steel is specifically designed to have enhanced weldability characteristics, making it easier for welders to join different pieces of steel together. This is achieved by carefully controlling the chemical composition of the steel, ensuring that it has the necessary alloying elements and impurity levels to promote good weldability. Secondly, special steel often has lower carbon content compared to regular steel, which reduces the likelihood of weld metal cracking. Carbon is known to increase the susceptibility to cracking during welding, so by decreasing the carbon content, special steel minimizes this risk, ensuring a stronger and more durable weld joint. Furthermore, special steel is often produced with controlled grain size and microstructure, which improves its weldability. Fine-grained steel exhibits better toughness and reduced brittleness, making it less prone to cracking during welding. Similarly, a well-controlled microstructure ensures a more uniform distribution of alloying elements, resulting in improved mechanical properties and weldability. Special steel is also often subjected to various heat treatment processes to further enhance its weldability. Heat treatments such as annealing, normalizing, or quenching and tempering can refine the microstructure, relieve residual stresses, and improve the toughness of the steel, all of which contribute to better weldability. In addition, special steel is carefully manufactured to have low levels of impurities, such as sulfur and phosphorus, which can negatively affect weldability. Minimizing these impurities ensures that the steel can be welded without the formation of detrimental welding defects and improves the overall quality of the weld. Overall, special steel plays a crucial role in enhancing the weldability of products. Its carefully controlled chemical composition, reduced carbon content, controlled grain size and microstructure, as well as the application of heat treatments, all contribute to easier, stronger, and more reliable weld joints.
Q: How does special steel contribute to the impact resistance of products?
Special steel, which is also referred to as high-strength or high-performance steel, plays a critical role in enhancing the impact resistance of various products. This particular type of steel is designed specifically to possess exceptional strength, toughness, and durability, making it highly resistant to deformation and fracture under conditions of high stress. One of the main contributing factors to the impact resistance of special steel is its composition. Special steel often contains alloying elements such as manganese, chromium, nickel, molybdenum, and vanadium, which are added to improve its mechanical properties. These alloying elements provide the steel with increased hardness, tensile strength, and resistance to wear, corrosion, and fatigue. Consequently, products made from special steel can withstand heavy impact loads without deforming or breaking. Furthermore, the microstructure of special steel plays a crucial role in its impact resistance. Advanced manufacturing techniques can be employed to finely adjust the steel's microstructure, achieving a desirable combination of strength and toughness. Special heat treatment processes, like quenching and tempering, can further refine the microstructure, resulting in a material that can effectively absorb and dissipate energy. This renders special steel highly resistant to cracks and fractures, even when subjected to sudden and severe impacts. In addition to its inherent properties, special steel is often utilized in the form of engineered components or structures that are specifically designed for impact resistance. For instance, in the automotive industry, special steel is employed in manufacturing components such as crash beams, bumpers, and roll cages. These components are designed to absorb and distribute impact energy, safeguarding the vehicle and its occupants during accidents. Overall, special steel significantly contributes to the impact resistance of products by providing superior strength, toughness, and durability. Its distinctive composition, microstructure, and design enable it to withstand high-stress conditions and effectively absorb impact energy. Consequently, products made from special steel offer enhanced safety and reliability, making them suitable for a wide range of applications in industries such as automotive, aerospace, construction, and defense.
Q: What are the properties of ultra-high-strength alloy steel?
Ultra-high-strength alloy steel possesses exceptional strength, hardness, and toughness, making it ideal for demanding applications. Due to its high carbon content and alloying elements such as chromium, nickel, and molybdenum, it exhibits outstanding resistance to wear, corrosion, and heat. Additionally, its superior mechanical properties enable it to withstand heavy loads, impacts, and extreme environments, making it a preferred choice in industries like aerospace, automotive, and construction.
Q: What are the different surface protection methods used for special steel?
To enhance the durability and resistance of special steel, several methods of surface protection are employed. Galvanizing is a commonly utilized technique, wherein a layer of zinc is applied to the steel surface. This shields the steel from corrosion and rusting, thereby prolonging its lifespan and preserving its appearance. Galvanizing can be executed through either hot-dip galvanizing or electroplating, depending on the specific requirements of the steel. Another method is powder coating, which entails the application of a dry powder to the steel surface, followed by curing at high temperatures. This results in the formation of a protective layer that is impervious to chipping, scratching, and fading. Powder coating is often chosen for its aesthetic benefits, as it offers a wide range of color options and can enhance the visual appeal of the steel. Furthermore, various types of paints and coatings can be employed to protect special steel. These coatings can be applied using a spray or brush technique, and they serve as a barrier against corrosion, chemicals, and UV radiation. Depending on the specific needs and environmental conditions, epoxy, polyurethane, and acrylic coatings are frequently utilized. Moreover, stainless steel possesses inherent resistance to corrosion due to its composition. However, to further safeguard it, passivation can be employed. Passivation involves a chemical treatment that eliminates iron particles from the surface, thus preventing corrosion and improving the steel's resilience against staining and pitting. Lastly, a layer of ceramic or enamel coating can be applied to protect special steel. These coatings offer high levels of resistance to heat, chemicals, and physical abrasion. They can be applied through spraying or dipping and are commonly used in environments where the steel will be exposed to extreme conditions or aggressive substances. In conclusion, the various surface protection methods utilized for special steel encompass galvanizing, powder coating, painting, passivation, and ceramic/enamel coating. These methods aim to enhance the steel's durability, corrosion resistance, and overall lifespan, ensuring that it can withstand diverse environmental factors while maintaining its structural integrity.
Q: What is the role of boron in special steel alloys?
Boron plays a crucial role in special steel alloys, particularly in enhancing their mechanical properties and overall performance. One of the primary functions of boron is as a hardenability agent, meaning it improves the hardness and strength of the steel. This is achieved through the formation of boride particles, which act as strengthening agents within the microstructure. Additionally, boron aids in the refinement of the grain structure of steel, resulting in improved toughness and resistance to cracking. It promotes the formation of fine-grained microstructures, which in turn increase the steel's ability to withstand high temperatures, pressure, and wear. Moreover, boron assists in the solidification process of steel, reducing the risk of hot cracking during casting or welding. It lowers the melting point of steel, allowing for better fluidity and improved flowability during manufacturing processes. Furthermore, boron can also enhance the machinability of steel alloys, making them easier to work with and reducing tool wear. Overall, the addition of boron to special steel alloys significantly contributes to their strength, hardness, toughness, and resistance to various forms of degradation. Its role is vital in optimizing the performance and durability of these alloys in demanding applications such as automotive components, aerospace structures, and industrial machinery.
Q: What are the different methods of surface shot blasting for special steel?
Special steel can be subjected to various surface shot blasting techniques. Among the most commonly employed methods are: 1. Wheel blasting: Utilizing a rapidly spinning wheel embedded with abrasive particles, this technique eliminates impurities and imperfections from the surface of the special steel. 2. Air blasting: By propelling abrasive particles onto the special steel surface using compressed air, this method achieves a thorough cleaning and prepares the surface for subsequent treatment or coating. 3. Wet blasting: This approach involves blending abrasive particles with water and spraying the resulting mixture onto the special steel surface. The inclusion of water helps manage dust and heat generated during the blasting process, rendering it suitable for delicate or sensitive steel surfaces. 4. Vacuum blasting: By incorporating a vacuum system alongside abrasive particles, this technique effectively eliminates both particles and contaminants from the special steel surface. It proves particularly valuable for removing paint or coatings. 5. Shot peening: Employed as a specialized variant of shot blasting, shot peening enhances the strength and fatigue resistance of special steel. It entails bombarding the surface with small spherical particles, generating compressive stresses that bolster the steel's durability. Each of these methods offers distinct advantages and is suitable for different types of special steel and surface conditions. The selection of the appropriate technique hinges upon factors like desired surface finish, contamination levels, and specific steel application requirements.
Q: How does special steel perform in marine applications?
Special steel performs exceptionally well in marine applications due to its excellent corrosion resistance and high strength. The steel is specifically designed to withstand harsh marine environments, such as saltwater, which can cause corrosion and deterioration in other materials. Its resistance to corrosion ensures durability and longevity, making it an ideal choice for various marine components and structures, including ships, offshore platforms, and underwater equipment. Additionally, the high strength of special steel enhances the structural integrity and load-bearing capacity of marine applications, providing superior performance and safety in challenging conditions.
Q: What are the quality control measures for special steel?
Quality control measures for special steel involve several key steps and processes to ensure that the final product meets the required standards and specifications. These measures typically include: 1. Raw Material Inspection: Thoroughly checking the quality and composition of the raw materials used in the production of special steel, such as ensuring the correct chemical composition and metallurgical properties. 2. Process Control: Implementing strict controls and monitoring throughout the manufacturing process to ensure consistent quality, such as maintaining precise temperature control during heating and cooling processes, controlling the rolling or forging parameters, and ensuring proper heat treatment. 3. Testing and Sampling: Conducting various tests and sampling techniques to assess the quality of the special steel, including mechanical tests (such as tensile strength, hardness), non-destructive testing (like ultrasonic or magnetic particle inspection), and chemical analysis. 4. Dimensional and Surface Inspection: Verifying that the dimensions and surface finish of the special steel conform to the required specifications, such as measuring length, diameter, straightness, and checking for any defects or irregularities. 5. Final Inspection and Certification: Performing a final inspection to ensure that the special steel meets all quality standards and customer requirements. This may involve visual examination, additional testing, and issuing necessary certifications or quality assurance documents. By implementing these quality control measures, manufacturers can ensure the reliability, durability, and consistent performance of special steel, making it suitable for various critical applications in industries like automotive, aerospace, energy, and construction.
Q: What are the main factors affecting the corrosion fatigue strength of special steel?
The main factors affecting the corrosion fatigue strength of special steel include the corrosive environment, the presence of aggressive substances, the level of stress applied, the frequency of stress cycling, and the microstructure and composition of the steel itself.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords