• GPC with lower Sulphur0.03% max in Low VM System 1
  • GPC with lower Sulphur0.03% max in Low VM System 2
GPC with lower Sulphur0.03% max in Low VM

GPC with lower Sulphur0.03% max in Low VM

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
21 m.t.
Supply Capability:
5000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Introduction:

 GPC has good characteristics with low ash, low resistivity, low sulphur, high carbon and high density. It is the best material for high quality carbon products. It is used as carbon additive in steel industry or fuel.  it is playing more and more important role in the industry

 Features:

1.Our strong team provide you reliable service that make you feel purchasing is more easier

2. We ensure that we can supply capability with competitive price. 

3. Work strictly to guarantee product quality, 

Specifications:

PARAMETER   UNIT GUARANTEE VALUE

F.C.%

95MIN 

94MIN

93MIN

92MIN

90MIN

85MIN 

84MIN 

ASH %

4MAX

5MAX

6 MAX

6.5MAX

8.5MAX

12MAX

13MAX

V.M.%

1 MAX

1MAX

1.0MAX

1.5MAX 

1.5MAX

3 MAX

3 MAX

SULFUR %

0.3MAX

0.3MAX

0.3MAX

0.35MAX

0.35MAX

0.5MAX

0.5MAX

MOISTURE %

0.5MAX

0.5MAX

0.5MAX

0.5MAX

0.5MAX

1MAX

1MAX

 

 

Pictures

 

GPC with lower Sulphur0.03% max in Low VM

GPC with lower Sulphur0.03% max in Low VM

GPC with lower Sulphur0.03% max in Low VM

 

FAQ:

 1. Your specification is not very suitable for us.
Please offer us specific indicators by TM or email. We will give you feedback as soon as possible.

2. When can I get the price?

We usually quote within 24 hours after getting your detailed requirements, like size, quantity etc. . 
If it is an urgent order, you can call us directly.

3. Do you provide samples?
Yes, samples are available for you to check our quality. 
Samples delivery time will be about 3-10 days. 

4. What about the lead time for mass product?
The lead time is based on the quantity, about 7-15 days. For graphite product, apply Dual-use items license need about 15-20 working days. 

5. What is your terms of delivery?
We accept FOB, CFR, CIF, EXW, etc. You can choose the most convenient way for you. Besides that, 
we can also shipping by Air and Express. 


6. Product packaging?
We are packed in bulk ship or in ton bag or placing in container or according to your requirements.

7. Notice
please note that the price on Alibaba is a rough price. The actual price will depends on raw materials, exchange rate wage and your order quantity .Hope to cooperation with you, thanks !

 

 

 

Q:Helmet material: ABS composites, FRP, carbon fiber, what are the differences? How to tell good from bad?
ABS is a kind of thermoplastic material, glass steel is called composite materials, the helmet is a large part of carbon fiber prepreg epoxy resin has high temperature and high pressure molding, glass fiber and unsaturated resin molding, strength needless to say, of course, is the best carbon fiber, the price is also the most expensive.
Q:What are the impacts of carbon emissions on the stability of mountain glaciers?
Mountain glaciers are significantly affected by carbon emissions, which have significant consequences for their stability. The release of carbon dioxide and other greenhouse gases into the atmosphere contributes to global warming and climate change. This rise in global temperatures directly impacts the health and stability of mountain glaciers. One of the main outcomes of increased carbon emissions is the accelerated melting of mountain glaciers. Warmer temperatures cause glaciers to melt at a faster pace, resulting in a decrease in their size and volume. This not only affects the visual appeal of these natural wonders but also has major implications for water resources and ecosystems. Mountain glaciers serve as natural reservoirs, holding water in the form of ice and gradually releasing it over time. This process helps regulate water flow in rivers and streams, ensuring a consistent water supply for downstream communities, agriculture, and ecosystems. However, as carbon emissions contribute to glacier melting, this natural water storage mechanism is disrupted. The loss of glaciers leads to reduced water availability during dry seasons and can result in water scarcity for communities dependent on glacier meltwater. Moreover, the retreat of mountain glaciers due to carbon emissions has ecological consequences. These glaciers provide critical habitats for various plant and animal species. The loss of glacier ice and associated ecosystems can have a ripple effect on the entire ecosystem, resulting in the decline or even extinction of species reliant on glacier-fed environments. The impacts of carbon emissions on mountain glaciers also extend beyond local communities and ecosystems. Glacial meltwater plays a significant role in the overall water supply in many regions globally. As glaciers shrink and vanish, the availability of water resources becomes uncertain, particularly in areas heavily reliant on glacier meltwater. This can potentially lead to conflicts over water resources and worsen existing tensions. In conclusion, the stability of mountain glaciers is severely affected by carbon emissions. The accelerated melting of glaciers disrupts water availability, threatens ecosystems, and presents challenges for water resource management. It is crucial to reduce carbon emissions to mitigate these impacts and preserve the integrity and functionality of mountain glaciers.
Q:Carbon injection molding machine heating several degrees
The quick test method for judging drying effect is to use the "air injection" on the injection molding machine". If the material flowing slowly from the nozzle is uniform and transparent, light silver strips and bubbles, is qualified. This method applies to all plastics.The melt viscosity of PC is much larger than that of PA, PS, PE, and the flowability is poor. Melt flow properties close to Newtonian fluid. The viscosity of the melt shear rate had little effect, and is very sensitive to changes in temperature, therefore, only by adjusting the molding processing temperature, viscosity can effectively control PC.The selection of molding temperature is relative to the average molecular weight of the resin and its distribution, the shape and size of the product, the type of the injection molding machine, and so on. It is generally controlled in the range of 250~310 centigrade. For injection molding, the resin with relatively low average molecular weight should be selected, MFR is 5 to 7g/10min; complex shape or thin wall products. Molding temperature should be high, 285~305 degrees; and thick wall products, molding temperature is slightly lower, to 250~280 degrees. Different injection molding machine, molding temperature is not the same. The screw type is 260~285 degrees, and the plunger type is 270~310 degrees centigrade. The setting of the material temperature is in the form of front high and low, near the end of the hopper, the temperature of the barrel should be controlled above the softening temperature of PC, that is greater than 230 degrees, to reduce the material resistance and injection pressure loss. In spite of increasing molding temperature, melt filling is beneficial. But not more than 230 DEG C, otherwise PC will degrade, make the products become darker in color, appear on the surface of silver, dark, black spots, bubbles and other defects, at the same time, the physical and mechanical properties will be significantly decreased.
Q:How is carbon used in the electronics industry?
Carbon is used in the electronics industry in various forms, such as carbon nanotubes and graphene, to enhance the performance of electronic devices. These carbon-based materials possess excellent electrical conductivity, high strength, and thermal properties, making them ideal for use in transistors, batteries, capacitors, and other electronic components. Additionally, carbon is used as a crucial element in the manufacturing of printed circuit boards and as a key component in the fabrication of LCD screens and touchscreens.
Q:How do you distinguish between alkaline and ordinary carbon cells?
The alkaline cell of the carbon cell can touch the ring groove at the end of the negative electrode, and there is no groove in the cylindrical surface of the ordinary dry cell, because the two sealing methods are different.
Q:What are the carbon nanotube applications?
The hydrogen storage materials: gas adsorption in adsorption is a solid adsorbent surface behavior the occurrence process of adsorbent and solid surface characteristics are closely related. The adsorption mechanism of nanoparticles, it was generally accepted that adsorption of carbon nanotubes is mainly due to the surface hydroxyl carbon nanotubes nanoparticles. The effect of carbon nanotubes on the surface of to hydroxyl and certain cationic bonding, so as to achieve the apparent of metal ions or organic matter adsorption. In addition, carbon nanotube particles have a large surface area, is also an important reason for the adsorption of carbon nanotubes. Zheng Qingrong, Gu Anzhong and [4] were studied on the adsorption behavior of hydrogen in carbon nanotubes Cheng Hui Ming et al. Synthesis of SWNTS treated properly can store hydrogen at room temperature, the hydrogen storage weight of up to 4.2%, and 78.3% of the hydrogen storage under normal temperature and pressure The hydrogen is released, and the remaining hydrogen is released after heating. The SWNTS can be reused and has a high commercial valueThe proton exchange membrane fuel cell (PEM) is a new type of carbon nanotubes: fuel cell vehicle power supply the most potential, the fuel cell through the consumption of hydrogen to generate electricity, the exhaust gas discharged into water vapor, therefore no pollution. It is compared with the lithium ion battery and Ni MH battery has great superiority. Can use carbon nanotubes hydrogen storage material supply hydrogen, can also be through the decomposition of oil and gas and other hydrocarbons or directly from the air to obtain hydrogen fuel cell hydrogen source.
Q:How are carbon fibers produced?
Carbon fibers are produced through a multi-step process known as carbonization. The process starts with a raw material called precursor, which is usually a polymer-based material such as polyacrylonitrile (PAN), rayon, or pitch. The first step involves spinning the precursor material into long, thin fibers. This can be done through various methods such as melt spinning, dry spinning, or wet spinning, depending on the type of precursor used. Once the fibers are formed, they undergo a stabilization process. This involves heating the fibers in the presence of oxygen at a relatively low temperature, usually around 200-300 degrees Celsius. Stabilization helps to remove any volatile components from the fibers and align the molecular structure in a way that enhances its heat resistance and strength. After stabilization, the fibers are subjected to a high-temperature treatment called carbonization. This process takes place in a furnace with little or no oxygen, typically at temperatures above 1000 degrees Celsius. During carbonization, the fibers are heated to a point where most of the non-carbon atoms are expelled, leaving behind a highly pure carbon structure. The final step in the production of carbon fibers is surface treatment. This involves applying a coating or treatment to the fibers to improve their bonding properties and adhesion with other materials. The surface treatment can be done using various methods such as sizing, coating, or plasma treatment. Overall, the production of carbon fibers involves a combination of spinning, stabilization, carbonization, and surface treatment processes to create fibers with exceptional strength, stiffness, and low weight. These properties make carbon fibers highly sought after in various industries, including aerospace, automotive, sports, and construction.
Q:Just come out to work, do activated carbon, often see carbon materials and carbon materials, I do not know what the difference, trouble you!
Carbon materials are usually specified, especially carbon and graphite materialsCarbon material is a broad carbon containing materialAbove.
Q:How does carbon dioxide affect climate change?
Carbon dioxide (CO2) is a greenhouse gas that plays a significant role in climate change. When released into the atmosphere through natural processes like volcanic eruptions or human activities such as burning fossil fuels, CO2 traps heat from the sun and prevents it from escaping back into space, leading to a phenomenon known as the greenhouse effect. The increased concentration of CO2 in the atmosphere due to human activities, primarily the burning of fossil fuels like coal, oil, and natural gas, has led to an imbalance in the natural carbon cycle. This imbalance has resulted in a rapid increase in global CO2 levels, contributing to the warming of the Earth's surface and the subsequent changes in climate patterns. Since the Industrial Revolution, the burning of fossil fuels has caused a significant rise in atmospheric CO2 levels, increasing the Earth's average temperature. This rise in temperature affects various aspects of the climate system, leading to a range of impacts. One of the most evident consequences of increased CO2 levels is the rise in global temperatures. This temperature increase leads to the melting of glaciers and polar ice, causing sea levels to rise. Rising sea levels pose a threat to coastal areas and low-lying islands, resulting in increased flooding, coastal erosion, and the potential displacement of communities. Furthermore, elevated CO2 levels contribute to more frequent and intense heatwaves, droughts, and wildfires in many regions. These extreme weather events can have detrimental effects on agriculture, water availability, and human health. Carbon dioxide also affects the balance of ecosystems by altering the growth patterns and distribution of plant and animal species. Changes in temperature and precipitation patterns, driven by increased CO2 levels, disrupt the delicate web of life, leading to the loss of biodiversity and the potential extinction of certain species. To mitigate the impacts of CO2 on climate change, reducing greenhouse gas emissions is crucial. Transitioning to renewable energy sources, improving energy efficiency, and adopting sustainable practices are some of the steps that can help reduce CO2 emissions and limit the extent of climate change. Additionally, efforts to restore and protect forests and other natural carbon sinks can help absorb and store CO2, mitigating its effects on the climate.
Q:How does carbon affect the formation of acidification in lakes?
Carbon dioxide (CO2) dissolved in water forms carbonic acid (H2CO3), which lowers the pH level of the water. This acidic environment can lead to acidification in lakes and other bodies of water.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches