• GB Standard HRB335  Deformed Bars System 1
  • GB Standard HRB335  Deformed Bars System 2
  • GB Standard HRB335  Deformed Bars System 3
GB Standard HRB335  Deformed Bars

GB Standard HRB335 Deformed Bars

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 Product Description:

 

OKorder is offering GB Standard HRB335  Deformed Bars at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to African, South American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

GB Standard HRB335  Deformed Bars are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's GB Standard HRB335  Deformed Bars are durable, strong, and wide variety of sizes.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: HRB335

Size: 6mm-25mm

Certificates: ISO, SGS, BV, CIQ

Length: 6m – 12m, as per customer request

Packaging: Export packing, nude packing, bundled

Grade

Technical data of the original chemical composition (%)

C

Mn

Si

S

P

B

HRB335

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

>0.0008

Physics capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation (%)

≥335

≥490

≥16

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will arrange production. The normal sizes with the normal grade can be produced within one month. The specific shipping date is dependent upon international and government factors, the delivery to international main port about 45-60days.

 

Images:

 

Q: How do steel rebars improve the ductility of concrete?
Concrete's ductility is enhanced by steel rebars in several ways. Firstly, the distribution and dissipation of stress throughout the concrete structure is facilitated by the presence of rebars. This prevents the concentration of loads in specific areas, thus preventing cracks or fractures and improving overall ductility. Secondly, when concrete undergoes tension or bending forces, rebars act as reinforcement to resist these forces. The tensile strength of steel rebars is higher compared to concrete, which is weak in tension. This reinforcement allows concrete to withstand higher tensile stresses without breaking, thereby increasing ductility. Furthermore, the bond between steel rebars and the concrete matrix plays a crucial role in improving ductility. The rough surface of rebars provides better adhesion with the surrounding concrete, increasing stress transfer between the two materials. This bond ensures that rebars do not slip out of the concrete during deformation, maintaining structural integrity and enhancing the ductility of the composite material. Additionally, the presence of steel rebars contributes to the post-cracking behavior of concrete. When cracks develop under high loads, rebars help hold the concrete together and prevent further crack propagation. This post-cracking behavior enables concrete to maintain its load-bearing capacity even in a damaged state, thereby improving overall ductility. In conclusion, steel rebars improve concrete's ductility by distributing stress, resisting tension and bending forces, enhancing the bond between concrete and rebars, and providing post-cracking reinforcement. These combined effects result in a more flexible and durable concrete structure capable of withstanding deformation without catastrophic failure.
Q: How do steel rebars affect the overall cost of maintenance and repairs?
Steel rebars can have a significant impact on the overall cost of maintenance and repairs in various structures. Firstly, steel rebars are commonly used to reinforce concrete structures such as buildings, bridges, and highways. These rebars provide strength and durability to the concrete, helping to prevent cracks and structural failures. When it comes to maintenance, steel rebars can play a crucial role in reducing the frequency and costs of repairs. By reinforcing the concrete, rebars help to distribute stress and load evenly, minimizing the chances of structural damage. This means that maintenance and repair works will be less frequent, saving both time and money for property owners or infrastructure managers. Moreover, steel rebars also contribute to the longevity of structures. By preventing cracks and other forms of damage, rebars help to extend the lifespan of the concrete. This reduces the need for costly and extensive repairs or even the complete replacement of the structure in the long run. However, it is important to note that steel rebars may also require maintenance themselves. Over time, rebars can corrode due to exposure to moisture, chemicals, or environmental factors. This corrosion can weaken the rebars and compromise the integrity of the structure. Therefore, periodic inspection and maintenance of the rebars are necessary to prevent any potential issues. In conclusion, steel rebars have a significant impact on the overall cost of maintenance and repairs. While they contribute to the strength and durability of structures, reducing the need for frequent repairs, they also require their own maintenance to prevent corrosion. Properly maintained steel rebars can help to extend the lifespan of structures and save costs in the long term.
Q: Excuse me, Shagang steel steel, what is the sign of
Steel is known as hot rolled ribbed bar. Ordinary hot rolled steel bars are made up of HRB and the minimum yield point of the brand. H, R, and B are the first letters in English for hot-rolled (Hotrolled), ribbed (Ribbed) and reinforced (Bars) three words. Hot rolled ribbed bar is divided into two levels, HRB335 (old No. 20MnSi), three HRB400 (20MnSiV, 20MnSiNb, old No. 20Mnti), four grade HRB500 three grade
Q: What's the difference between primary and two grade steel and three grade steel?
There are two kinds of commonly used classification methods of thread steel: one is to shape classification, according to different space shapes and transverse rib rib for classification or type, such as the British Standard (BS4449), the thread steel is divided into type I and type ii. This classification mainly reflects the tightening performance of the threaded steel.
Q: Can steel rebars be used in seismic zone areas?
Yes, steel rebars can be used in seismic zone areas. Steel rebars are commonly used in construction projects in seismic-prone regions because they provide strength and flexibility to reinforce concrete structures, making them more resistant to seismic forces. The use of properly designed and installed steel rebars can help enhance the structural integrity and safety of buildings in seismic zone areas.
Q: How do steel rebars affect the overall fire safety of a structure?
Steel rebars can have both positive and negative effects on the overall fire safety of a structure. On one hand, steel rebars can contribute to the strength and stability of the structure, helping it withstand the impact of a fire and preventing structural collapse. This is especially important in high-rise buildings or structures that are vulnerable to fire hazards. Moreover, steel rebars have a high melting point, making them more resistant to heat compared to other building materials. This can help slow down the spread of fire and provide additional time for evacuation or firefighting measures. However, steel rebars can also have some negative effects on fire safety. When exposed to high temperatures, steel expands, which can lead to structural deformations and potential failure of the rebars. This can compromise the integrity of the structure and increase the risk of collapse. Additionally, steel rebars conduct heat, which means they can transfer heat from the fire to other parts of the structure. This can cause localized heating and weaken nearby materials, potentially leading to a faster spread of fire within the building. To mitigate these negative effects, fire-resistant coatings or fireproofing materials can be applied to the steel rebars. These coatings can provide insulation and protect the rebars from high temperatures, delaying their failure and reducing the risk of structural collapse. In conclusion, while steel rebars can enhance the overall fire safety of a structure by providing strength and stability, they also have some drawbacks. Proper fire protection measures, such as fire-resistant coatings, are crucial to ensure the rebars perform optimally in the event of a fire.
Q: What are the factors to consider while designing a reinforced concrete structure with steel rebars?
To ensure the strength, durability, and safety of a reinforced concrete structure with steel rebars, careful consideration of various factors is required. The following are key factors to consider: 1. Structural Requirements: The initial step involves determining the structure's specific purpose and load-bearing capacity. This entails considering its intended use, maximum load, and potential dynamic loads like wind or earthquakes. 2. Material Selection: Choosing the correct type and grade of concrete and steel rebars is crucial. The concrete mix should possess sufficient strength, workability, and durability to withstand anticipated conditions. Similarly, the rebars should have adequate yield strength and corrosion resistance to maintain structural integrity over time. 3. Reinforcement Layout: The design should include an appropriate arrangement and spacing of rebars to evenly distribute the load and prevent cracking or structural failure. This requires determining the size, quantity, and arrangement of rebars based on calculated forces and bending moments. 4. Concrete Cover: The concrete cover refers to the thickness of concrete surrounding the rebars. Providing sufficient cover is essential to protect the rebars from corrosion, fire, and environmental factors. The cover thickness should be determined based on exposure conditions and required durability. 5. Bonding between Concrete and Rebars: Ensuring proper bonding between the concrete and rebars is vital for effective force transfer. The design should consider factors such as mechanical interlocking, chemical adhesion, and surface treatment to establish a strong bond and prevent slippage or separation. 6. Construction Considerations: The design should account for practical construction aspects such as formwork, concrete placement, and compaction. It should also incorporate appropriate detailing for construction joints, lap splices, and rebar anchorage to ensure proper installation and ease of construction. 7. Serviceability and Durability: The design should address serviceability requirements like deflection limits, cracking control, and long-term performance. Additionally, factors impacting durability, such as moisture exposure, chemical exposure, temperature variations, and the potential for corrosion, should be considered. 8. Quality Control and Inspection: Implementing quality control measures, including material testing, construction monitoring, and completed work inspection, is crucial to ensure the design requirements are met. Regular inspections and adherence to construction standards and codes are essential for the overall integrity and safety of the structure. By considering these factors and adhering to appropriate design codes and standards, a reinforced concrete structure with steel rebars can be designed to provide the desired strength, durability, and safety throughout its lifespan.
Q: Are steel rebars resistant to extreme temperatures?
Yes, steel rebars are generally resistant to extreme temperatures. Steel has a high melting point and can withstand both high and low temperatures without significant structural changes or loss of strength. However, extremely high temperatures can cause some degradation in the rebar's mechanical properties over time.
Q: What is the effect of steel rebars on the electrical conductivity of concrete?
Steel rebars have a significant effect on the electrical conductivity of concrete. As steel is a highly conductive material, the presence of steel rebars in concrete increases its overall electrical conductivity. This is due to the fact that steel rebars create a network of conductive paths throughout the concrete matrix, allowing for the easy flow of electrical current. The electrical conductivity of concrete is an important factor to consider, especially in applications where electrical grounding or conductivity is necessary. Steel rebars aid in providing a low-resistance pathway for electrical current, improving the overall electrical conductivity of the concrete structure. However, it is essential to note that the presence of steel rebars can also introduce potential challenges in certain scenarios. For instance, in electrical installations where insulation is required or in areas where electrical isolation is necessary, the conductivity provided by steel rebars may not be desired. In such cases, additional measures like insulation or isolation techniques need to be employed to prevent unwanted electrical currents from flowing through the concrete. Overall, the effect of steel rebars on the electrical conductivity of concrete is dependent on the specific requirements and applications of the concrete structure. Understanding the intended use and implementing appropriate measures accordingly will ensure that the electrical conductivity of the concrete meets the desired specifications.
Q: How do steel rebars affect the cost of a construction project?
Steel rebars can significantly affect the cost of a construction project in several ways. Firstly, steel rebars are commonly used in reinforced concrete structures to provide strength and stability. The quantity and quality of rebars required for a project depend on factors such as the size, design, and intended use of the structure. The cost of steel rebars itself is a major factor. The price of steel rebars fluctuates due to market conditions, availability, and demand, so it can significantly impact the overall project cost. Additionally, the grade and quality of steel rebars can also vary, with higher grades generally being more expensive. Furthermore, the quantity of steel rebars needed directly affects the cost. Large-scale projects that require a significant amount of steel rebars, such as high-rise buildings or infrastructure projects, can have substantial rebar expenses. The cost is influenced by factors such as the size and complexity of the structure, as well as the engineering and design requirements. Labor costs associated with handling, cutting, bending, and placing the rebars are another consideration. Skilled labor is required to properly install rebars, ensuring they are correctly positioned and secured. The more complex the structure or design, the more labor-intensive and time-consuming the rebar installation becomes, resulting in higher labor costs. Additionally, the use of steel rebars can impact project scheduling and timelines. It may require additional time for the procurement, delivery, and installation of rebars, which can potentially delay the overall construction schedule. Any delays can lead to increased project costs due to extended labor and overhead expenses. Lastly, the long-term cost implications of using steel rebars need to be considered. Steel rebars provide durability and strength to concrete structures, which can result in reduced maintenance and repair costs over the lifespan of the project. Investing in high-quality rebars initially can save money in the long run by minimizing the need for future repairs or replacements. In conclusion, the use of steel rebars significantly affects the cost of a construction project. The cost of the rebars themselves, the quantity required, labor expenses, project scheduling, and long-term durability considerations all contribute to the overall impact on the project cost. It is essential for construction professionals to carefully analyze and plan for these factors to ensure accurate cost estimations and successful project execution.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords