• HRB400 Reinforced Deformed Steel Bar System 1
  • HRB400 Reinforced Deformed Steel Bar System 2
  • HRB400 Reinforced Deformed Steel Bar System 3
  • HRB400 Reinforced Deformed Steel Bar System 4
  • HRB400 Reinforced Deformed Steel Bar System 5
  • HRB400 Reinforced Deformed Steel Bar System 6
HRB400 Reinforced Deformed Steel Bar

HRB400 Reinforced Deformed Steel Bar

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Standard:
AISI,JIS,GB,BS,DIN,API,EN,ASTM
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round,Rectangular,Oval,LTZ
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Thickness:
as required
Length:
as required
Net Weight:
as required

HRB400 Reinforced Deformed Steel Bar      


Product Description:

Item NameDeformed Steel Bar(Rebar)
StandardBS4449:1997,GB1499.2-2007
CertificationISO9001,UK CARES
DimensionDiameter:6.5mm-40mm,as customer's requirement
Length:9000mm-12000mm,as customer's requirement
ApplicationIt is widely used in Oil pipe,Gas pipe,Construction,etc


FAQ:

 

1.Q:You are Factory or Trading Company?

 

A:We are factory,our main products include Steel plate,Steel Bar,Steel coils.

 

2.Q:What’s the MOQ?

 

A:Generally,the trail order will be accepted.The MOQ can be confirmed according to the different products.For example,the MOQ of rebar will be 25-50MT,the galvanized steel pipe will be 10MT,the stainless steel pipe will 1-5MT.

 

3.Q:Do you have OEM service?

 

A: Yes.Variety of products size,quality and quantity can be customized according to your need.

 

4.Q:Could you support free sample?

 

A:Yes.We can supply FREE samples.But the delivery charges will be covered by our customers.

 

5.Q:How about the delivery time?

 

A:Within 15-30days after receiving the deposit or L/C at sight.

 

6.Q:How about the trade terms?

 

A:EXW,FOB,CFR,CIF will be accepted.

 

7.Q:How about your payment terms?

 

A:30%TT in advance and the balance against of copy of B/L.

The irrevocable L/C at sight will be accepted.

 

8. Why Choose Us?

 

A:Best Quality-Steel plates from China First-Class mills include heat and batch no. for tracking.

B:The most Competitive Price-As the A-Level agent of the world top 500 steel mill, they provide us the lowest price.

C:Fast Delivery-Stationed staffs in mill for monitoring and speeding up the production at any time.


HRB400 Reinforced Deformed Steel BarHRB400 Reinforced Deformed Steel Bar

HRB400 Reinforced Deformed Steel BarHRB400 Reinforced Deformed Steel Bar


Q: What are the common defects or issues associated with steel rebars?
Steel rebars can encounter various defects or issues, including the following: 1. Rust: When exposed to moisture or corrosive substances, steel rebars are prone to rusting. This rust weakens their load-bearing capacity and compromises the structural integrity of the reinforced concrete. 2. Poor bonding with concrete: Inadequate cleaning or the presence of rust can prevent rebars from bonding well with the concrete. This can result in reduced strength and durability of the reinforced concrete structure. 3. Incorrect size or shape: Structural problems can arise from rebars that are improperly sized or shaped. For instance, rebars that are too short or have insufficient coverage might not provide enough reinforcement, making the structure susceptible to cracking or collapse. 4. Improper placement: Weak points in the reinforced concrete can occur due to incorrect rebar placement. This can happen when rebars are not adequately spaced, aligned, or when there are gaps between the rebar and the concrete. 5. Inappropriate storage and handling: To prevent rust, it is crucial to store rebars in a dry and well-ventilated area. Improper storage or handling can lead to surface damage, bending, or twisting of the rebars, affecting their performance in reinforced concrete. 6. Welding defects: Welded rebars may have defects such as insufficient fusion, cracks, or lack of penetration. These defects can compromise the strength and integrity of the reinforcement. 7. Overlapping issues: Overlapping rebars is a common practice to ensure reinforcement continuity. However, improper overlapping, such as insufficient overlap length or inadequate lapping of rebars, can result in weak joints and reduced structural strength. 8. Quality control concerns: Defects or issues in rebars can arise from inadequate quality control during manufacturing or installation. This can encompass problems like improper chemical composition, inadequate strength, or deviations from specified standards. Addressing and rectifying these defects or issues during the design, manufacturing, and construction stages is crucial to ensure the safe and reliable performance of reinforced concrete structures. Regular inspection, maintenance, and adherence to industry standards and guidelines are essential in mitigating these common issues associated with steel rebars.
Q: Can steel rebars be galvanized for additional protection?
Yes, steel rebars can be galvanized for additional protection. Galvanizing is a process where a layer of zinc is applied to the surface of the steel rebar. This layer acts as a protective barrier, preventing corrosion and extending the lifespan of the rebar. Galvanized steel rebars are commonly used in construction projects where exposure to moisture, chemicals, or other corrosive elements is expected. The galvanizing process involves dipping the steel rebars into a bath of molten zinc or applying a zinc-rich coating through a hot-dip galvanizing or electroplating process. This results in a durable and corrosion-resistant coating that provides additional protection to the steel rebar, increasing its longevity and reducing maintenance requirements. Overall, galvanizing steel rebars is an effective method of enhancing their protection against corrosion and ensuring their long-term durability in various applications.
Q: How are steel rebars protected during storage and transportation?
Steel rebars are typically protected during storage and transportation through various measures such as wrapping them in moisture-resistant materials, applying anti-corrosion coatings, and storing them in covered areas or enclosed containers to shield them from environmental factors like moisture, dirt, and physical damage.
Q: Are steel rebars suitable for reinforcement in tunnels?
Yes, steel rebars are suitable for reinforcement in tunnels. Steel rebars are widely used in tunnel construction due to their high tensile strength, durability, and ability to resist deformation and cracking under stress. They provide structural integrity to the tunnel walls, ensuring stability and safety. Additionally, steel rebars can be easily bent and shaped to fit the desired design of the tunnel, making them a versatile option for reinforcement.
Q: Are steel rebars susceptible to fatigue failure?
Yes, steel rebars are susceptible to fatigue failure.
Q: How do steel rebars prevent concrete structures from cracking under load?
Steel rebars, also known as reinforcing bars, are crucial elements in concrete structures due to their vital role in crack prevention under heavy loads. Rebars contribute to the structural integrity and durability of concrete in several ways: 1. Reinforcement: Acting as tension members, steel rebars add strength to the concrete. Although concrete is strong in compression, it is relatively weak in tension. When a load is applied, rebars absorb the tensile forces and distribute them throughout the structure, reducing the risk of cracking. 2. Load transfer: By embedding rebars within the concrete, they facilitate the transfer of loads from one section to another. This mechanism ensures even distribution of stresses, preventing concentrated stress points that could lead to cracks. 3. Bonding: The texture and ridges on the rebar enhance its bond with the concrete. This bond is critical as it allows the effective transfer of stress between the concrete and the steel. The interlocking action between the two materials ensures their collaboration, enhancing the overall strength and load-bearing capacity of the structure. 4. Control of expansion and contraction: Concrete structures experience temperature variations that cause expansion or contraction. Steel rebars help control these movements by providing stability and limiting the extent of cracking. They absorb and accommodate the expansion and contraction, minimizing the risk of extensive cracking and maintaining the structural integrity. 5. Flexibility: Steel rebars possess a high degree of flexibility, enabling them to absorb dynamic loads and stresses. This flexibility ensures that the rebars can withstand external forces without fracturing or damaging the concrete. By absorbing and distributing these loads, rebars prevent cracks from forming and spreading throughout the structure. In conclusion, steel rebars prevent cracking in concrete structures by reinforcing the concrete, transferring loads, enhancing bonding, controlling expansion and contraction, and providing flexibility to absorb dynamic forces. Their presence significantly improves the strength, durability, and resistance to cracking of concrete structures under various loading conditions.
Q: How are steel rebars tested for quality and strength?
Quality and strength of steel rebars are assessed through a series of standardized tests, ensuring adherence to required standards and ability to withstand anticipated loads and stresses. A primary test is the Tensile Test, which measures the maximum stress a rebar can endure before breaking. A sample rebar is pulled until it fractures, and the force needed to cause this fracture is measured. This test offers valuable data about the rebar's ultimate tensile strength, yield strength, and elongation. Another critical examination is the Bend Test, which evaluates the rebar's ductility and ability to resist breaking when bent. A sample rebar is bent to a specific angle, and any cracks or fractures are closely inspected. If there are no indications of failure, the rebar is considered acceptable. Furthermore, Chemical Analysis is performed to determine the rebar's chemical composition. This test ensures compliance with required chemical composition standards, as variations can impact the rebar's strength and durability. The Dimensional Test is conducted to verify that the rebar meets the specified standards in terms of dimensions, weight, and shape. Deviations from the required measurements can compromise the rebar's structural integrity. Additionally, the rebar's Surface Condition is visually evaluated to identify signs of rust, cracks, or other defects that could affect its performance. Proper surface condition is crucial for ensuring effective bonding with the surrounding concrete. Lastly, certain rebars undergo Non-Destructive Testing, such as ultrasonic testing or magnetic particle inspection, to identify hidden defects or cracks that may not be visible to the naked eye. In conclusion, these testing methods guarantee that steel rebars possess the necessary quality and strength for use in construction projects, providing essential reinforcement for reinforced concrete structures.
Q: Are steel rebars resistant to lightning strikes?
Yes, steel rebars are generally considered resistant to lightning strikes due to their high electrical conductivity, which allows them to effectively dissipate the electrical energy from a lightning strike.
Q: Can steel rebars be used in sports arena construction?
Yes, steel rebars can be used in sports arena construction. Steel rebars are commonly used as reinforcement in concrete structures, including sports arenas. The use of steel rebars provides added strength and stability to the concrete, ensuring that the structure can withstand the loads and stresses imposed by the arena's design, such as the weight of the roof, seating, and equipment. Additionally, steel rebars help to prevent cracking and improve the overall durability of the arena. They are often embedded within the concrete foundation, columns, and beams of the structure to enhance its structural integrity and longevity.
Q: What are the guidelines for repairing or replacing corroded steel rebars in existing structures?
The guidelines for repairing or replacing corroded steel rebars in existing structures vary depending on the severity of the corrosion and the specific requirements of the project. However, there are some general guidelines that can be followed: 1. Assessment: Before proceeding with any repairs or replacements, a thorough assessment of the corrosion damage should be conducted. This may involve visual inspections, non-destructive testing, or even laboratory analysis of samples taken from the rebars. 2. Safety: Safety should always be the top priority when working with corroded rebars. Adequate precautions should be taken to ensure the safety of workers and surrounding areas. This may include the use of personal protective equipment and ensuring a stable work environment. 3. Determine the extent of corrosion: It is important to determine the extent of corrosion and whether it has affected the structural integrity of the rebars. This can help in deciding whether repair or replacement is necessary. 4. Repair methods: Depending on the severity of corrosion, various repair methods can be employed. These may include removing the corroded portion of the rebar and applying a corrosion inhibitor or protective coating, or using electrochemical techniques such as cathodic protection to prevent further corrosion. 5. Replacement: If the corrosion damage is extensive and repair is not feasible, the corroded rebars may need to be replaced. The replacement rebars should be of the same or higher grade and should be properly anchored to maintain the structural integrity of the existing structure. 6. Design considerations: When repairing or replacing corroded rebars, it is important to consider the design requirements of the structure. The repaired or replaced rebars should meet the necessary load-bearing capacity and should be properly integrated into the existing structure. 7. Quality control: Throughout the repair or replacement process, rigorous quality control measures should be implemented to ensure the effectiveness and durability of the repairs. This may include regular inspections, testing, and monitoring of the repaired or replaced rebars. It is important to note that these guidelines are general recommendations and should be tailored to the specific circumstances and requirements of each project. Therefore, it is advisable to consult with a structural engineer or a professional experienced in repairing corroded steel rebars for a more accurate and detailed guideline.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords