HRB400 Reinforced Deformed Steel Bar
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 100000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
HRB400 Reinforced Deformed Steel Bar
Product Description:
Item Name | Deformed Steel Bar(Rebar) | |||||||
Standard | BS4449:1997,GB1499.2-2007 | |||||||
Certification | ISO9001,UK CARES | |||||||
Dimension | Diameter:6.5mm-40mm,as customer's requirement | |||||||
Length:9000mm-12000mm,as customer's requirement | ||||||||
Application | It is widely used in Oil pipe,Gas pipe,Construction,etc |
FAQ:
1.Q:You are Factory or Trading Company?
A:We are factory,our main products include Steel plate,Steel Bar,Steel coils.
2.Q:What’s the MOQ?
A:Generally,the trail order will be accepted.The MOQ can be confirmed according to the different products.For example,the MOQ of rebar will be 25-50MT,the galvanized steel pipe will be 10MT,the stainless steel pipe will 1-5MT.
3.Q:Do you have OEM service?
A: Yes.Variety of products size,quality and quantity can be customized according to your need.
4.Q:Could you support free sample?
A:Yes.We can supply FREE samples.But the delivery charges will be covered by our customers.
5.Q:How about the delivery time?
A:Within 15-30days after receiving the deposit or L/C at sight.
6.Q:How about the trade terms?
A:EXW,FOB,CFR,CIF will be accepted.
7.Q:How about your payment terms?
A:30%TT in advance and the balance against of copy of B/L.
The irrevocable L/C at sight will be accepted.
8. Why Choose Us?
A:Best Quality-Steel plates from China First-Class mills include heat and batch no. for tracking.
B:The most Competitive Price-As the A-Level agent of the world top 500 steel mill, they provide us the lowest price.
C:Fast Delivery-Stationed staffs in mill for monitoring and speeding up the production at any time.
- Q: What are the guidelines for the proper spacing of steel rebars in slabs?
- The guidelines for the proper spacing of steel rebars in slabs are crucial to ensure the structural integrity and strength of the concrete slab. Here are the general guidelines to follow: 1. Rebar Diameter: The diameter of the steel rebar should be determined based on the load and design requirements. Common rebars sizes range from 6mm to 32mm. 2. Spacing: The spacing between rebars is determined by the thickness of the slab and the design specifications. As a general rule, the spacing should not exceed three times the slab thickness. For example, if the slab thickness is 150mm, the maximum spacing between rebars should be 450mm. 3. Edge Distance: The distance between the rebar and the edge of the slab is also crucial. The minimum edge distance should be at least 50mm to prevent cracking and ensure proper load distribution. 4. Clear Cover: The clear cover refers to the distance between the rebar and the surface of the slab. It is essential to provide sufficient clear cover to protect the rebar from corrosion. The clear cover requirements vary depending on the environmental conditions, but commonly range from 20mm to 40mm. 5. Reinforcement Ratio: The reinforcement ratio is the amount of steel reinforcement used per unit area of the slab. This ratio is determined by the load requirements and the design specifications. Typically, the reinforcement ratio ranges from 0.5% to 2%. 6. Lap Splicing: In cases where the length of the rebar is insufficient, lap splicing is required. The lap length should be determined based on the rebar diameter, grade, and design requirements. 7. Placement: The rebars should be placed accurately and securely inside the slab formwork. Proper alignment and placement ensure that the rebars are positioned correctly to resist the anticipated loads. It is important to note that these guidelines are general and may vary depending on the specific project, structural design, and local building codes. It is recommended to consult with a structural engineer or refer to the relevant building codes and standards for precise guidelines specific to your project.
- Q: What is the ductility of steel rebars?
- Steel rebars are capable of deforming and stretching without fracturing while under tension or bending, which is what ductility refers to. The excellent ductility exhibited by steel rebars enables them to effectively absorb and disperse energy when exposed to heavy loads or seismic forces. This attribute is crucial in construction as it guarantees that the rebars can endure harsh conditions while maintaining the structural integrity. Additionally, the ductility of steel rebars renders them suitable for numerous applications, including reinforcing concrete structures and providing support for buildings, bridges, and other infrastructure projects.
- Q: Is the steel thread stainless steel?
- Steel is known as hot rolled ribbed bar. Ordinary hot rolled steel bars are made up of HRB and the minimum yield point of the brand. H, R, and B are the first letters in English for hot-rolled (Hotrolled), ribbed (Ribbed) and reinforced (Bars) three words. Hot rolled ribbed bar is divided into two levels, HRB335 (old No. 20MnSi), three HRB400 (20MnSiV, 20MnSiNb, old No. 20Mnti), four grade HRB500 three grade.
- Q: How do steel rebars prevent cracking in concrete?
- Steel rebars prevent cracking in concrete by providing reinforcement and increasing the overall strength and durability of the structure. When concrete is subject to tensile forces, such as bending or stretching, it tends to crack. However, steel rebars are added to concrete construction to counteract these tensile forces. The rebars, which are made of high-strength steel, are strategically placed within the concrete to create a reinforcing mesh or framework. This mesh acts as a skeleton that absorbs and distributes the tensile forces throughout the concrete structure, preventing the formation of cracks. When external loads, such as heavy weights or seismic forces, are applied to the concrete, the rebars bear the tensile stress instead of the concrete. The steel rebars have a significantly higher tensile strength compared to concrete, allowing them to resist the forces that would normally cause cracking. By distributing the stress more evenly, the rebars minimize the formation of cracks and help maintain the structural integrity of the concrete. Furthermore, steel rebars also prevent cracks by improving the bond between the concrete and the reinforcement. Concrete has excellent compressive strength, but its tensile strength is relatively low. The presence of rebars increases the overall tensile strength of the concrete, making it less likely to crack under tension. The rebars create a bond with the concrete, forming a composite material that can withstand both compressive and tensile forces more effectively. In summary, steel rebars prevent cracking in concrete by providing reinforcement, absorbing tensile forces, and improving the overall strength and durability of the structure. They act as a skeleton within the concrete, distributing stress and preventing the formation of cracks, thereby ensuring the longevity and stability of the concrete construction.
- Q: Are there any specific guidelines for storing steel rebars on-site?
- Yes, there are specific guidelines for storing steel rebars on-site. Here are some key guidelines to consider: 1. Rebars should be stored on a flat, level surface to prevent distortion or bending. If the ground is not level, use wooden pallets or metal racks to create a stable storage area. 2. Ensure that the storage area is clean and free from any debris that could damage the rebars. Avoid storing rebars directly on the ground or in areas prone to water accumulation. 3. Proper stacking is important to prevent rebars from toppling over. Stack rebars in an orderly manner, making sure to align them vertically and horizontally. Use spacers or separators to maintain adequate spacing between the rebars and prevent them from touching each other. 4. If rebars are stored outdoors, cover them with a waterproof tarp or plastic sheeting to protect them from rain, snow, and moisture. This will help prevent rust and corrosion. 5. If rebars are stored indoors, ensure that the storage area has proper ventilation to prevent moisture buildup. This is particularly important to prevent rusting in humid environments. 6. Rebars should be stored away from any potential sources of damage, such as heavy machinery, construction equipment, or areas with high traffic. This will minimize the risk of accidental damage during construction activities. 7. Regularly inspect the rebars for any signs of damage, rust, or corrosion. If any rebars are found to be damaged, they should be removed from storage and replaced to ensure structural integrity in the construction project. Following these guidelines will help ensure that steel rebars are stored safely and maintain their structural integrity for use in construction projects.
- Q: How are steel rebars protected against corrosion in aggressive environments?
- Steel rebars are protected against corrosion in aggressive environments by using various methods such as epoxy coatings, zinc coatings, and cathodic protection. These measures create a barrier between the rebar and the corrosive elements, preventing the steel from coming into direct contact with moisture and oxygen. Additionally, proper concrete cover and pH control in the surrounding environment can also contribute to the protection of steel rebars against corrosion.
- Q: How are steel rebars classified based on grades?
- Steel rebars are classified based on grades according to the minimum yield strength they possess. The grade of a steel rebar indicates its strength and ability to withstand stress and loads. The most commonly used grades for steel rebars are Grade 40, Grade 60, and Grade 75. Grade 40 rebars have a minimum yield strength of 40,000 pounds per square inch (psi). They are typically used in general construction projects where high strength is not a primary requirement. Grade 40 rebars are suitable for light to moderate load-bearing structures such as residential buildings, sidewalks, and driveways. Grade 60 rebars have a minimum yield strength of 60,000 psi. They are the most commonly used grade for construction purposes and are suitable for a wide range of applications. Grade 60 rebars are used in reinforced concrete structures, bridges, highways, and commercial buildings where higher strength is necessary to withstand heavy loads and seismic forces. Grade 75 rebars have a minimum yield strength of 75,000 psi. They are designed for high-stress applications and are mainly used in large-scale infrastructure projects, such as high-rise buildings, dams, and heavy industrial structures. Grade 75 rebars provide exceptional strength and durability, making them suitable for projects requiring superior load-bearing capacity and resistance to extreme conditions. It is important to note that the specific requirements and standards for steel rebars may vary between different countries and regions. Therefore, it is crucial to follow local codes and regulations to determine the appropriate grade of steel rebar for each construction project.
- Q: Are rebar bars = rebar?
- Generally speaking (not absolute circle) steel is usually made of plate steel as the main form of packing, while threads are usually packed in straight strips.Turn left and turn right |
- Q: How do steel rebars affect the overall structural stability of a building?
- Steel rebars significantly enhance the overall structural stability of a building. By reinforcing concrete, rebars increase its tensile strength and prevent cracking and failure under heavy loads or external forces. This reinforcement ensures that the building can withstand various stresses, such as earthquakes, wind, and vibrations, improving its durability and safety.
- Q: Can steel rebars be used in cold storage construction?
- Cold storage construction can utilize steel rebars. These rebars are extensively employed in construction for their strength and durability. In the context of cold storage construction, where low temperatures are maintained, steel rebars offer multiple benefits. To begin with, steel rebars possess remarkable thermal conductivity, enabling them to quickly adapt to the low temperatures inside the cold storage facility. This facilitates the maintenance of a consistent temperature throughout the structure, preventing any potential issues of expansion or contraction. Moreover, steel rebars have a high tensile strength, making them suitable for withstanding heavy loads and providing structural stability in cold storage construction. Given that the cold storage facility often requires a robust framework to support the weight of stored products and equipment, this strength is crucial. Additionally, steel rebars exhibit corrosion resistance, which is particularly vital in cold storage environments. The combination of low temperatures and high humidity levels can create an environment favorable to corrosion. However, steel rebars are typically coated with epoxy or galvanized to shield them from moisture and prevent rusting. Lastly, steel rebars are easily obtainable and cost-effective, making them a practical choice for cold storage construction projects. They can be readily sourced and fabricated to meet specific design requirements, ensuring that the structure can withstand the unique challenges of a cold storage environment. In conclusion, steel rebars can effectively be utilized in cold storage construction due to their thermal conductivity, high tensile strength, corrosion resistance, and availability. They provide the necessary structural support and durability required for the construction of cold storage facilities.
Send your message to us
HRB400 Reinforced Deformed Steel Bar
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 100000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords