• FC93 Injection Carbon with good and stable quality System 1
  • FC93 Injection Carbon with good and stable quality System 2
FC93 Injection Carbon with good and stable quality

FC93 Injection Carbon with good and stable quality

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
20 m.t.
Supply Capability:
3000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specifications

Calcined Anthracite 
1.low sulphur, low ash 
2.fixed carbon:95% -90% 
3.sulphur:lower than 0.3% 
4.Calcined Anthracite Coal

Advantage and competitive of caclined anthracite:

1. strong supply capability 

2. fast transportation

3. lower and reasonable price for your reference

4.low sulphur, low ash

5.fixed carbon:95% -90%

6..sulphur:lower than 0.3%


Package: In 25KG bags or in MT bags


Cardon additives made from well-selected Tai Xi anthracite .Mainly used in steelmaking
in electrical stove, screening water,quality,shipbuilding sandblast removing rust producingcarbon materials.Mainly industry property of it is : instead of traditional pertroleum coal of Carbon Additives,reduce the cost of steelmaking.


General Specification of Calcined Anthracite coal:

PARAMETER   UNIT GUARANTEE VALUE

F.C.%  95MIN  94MIN  93MIN  92MIN  90MIN

ASH %  4MAX        5MAX6 MAX6.5MAX8.5MAX

V.M.%  1 MAX        1MAX1.0MAX1.5MAX 1.5MAX

SULFUR %  0.3MAX0.3MAX0.3MAX0.35MAX0.35MAX

MOISTURE %0.5MAX0.5MAX0.5MAX0.5MAX0.5MAX

Pictures:


FC %9594939290
ASH %4566.58.5
V.M. %1111.51.5
S %0.30.3
0.30.35
0.35
MOISTURE %0.50.50.50.50.5

Pictures

FC93 Injection Carbon with good and stable quality


FC93 Injection Carbon with good and stable quality



Q: How does carbon form?speed
How is coal formed?Coal is known as black gold, the food industry, it is one of the main energy use of the human world since eighteenth Century. Although its important position has been replaced by oil, but in the future for a long period of time, due to the exhaustion of petroleum, inevitable decline, but because of the huge reserves of coal, and the rapid development of science and technology, the new technology of coal gasification is becoming more mature and widely used, coal will become one of the production and life of human beings in an irreplaceable energy.Coal is millions of years of plant leaves and roots, stacked on the ground with a layer of very thick black humus, due to changes in the earth's crust constantly buried underground, long isolated from the air and under high temperature and pressure, after a series of complex physical and chemical changes and other factors, the formation of black however, this fossil, is the coal forming process.The thickness of coal seam in a coal mine and the crust drop speed and accumulation amount of plant remains. The crust decreased rapidly, the plant remains piled thick, the coal seam is thick, on the other hand, the crust decline slowly, the accumulation of plant remains thin, the mine coal seam is thin. The tectonic movement of the crust to the original level of coal seam folds and faults occur, some underground coal seam buried deeper, and squeezed to the surface, even above the ground, more likely to be found. There are some relatively thin coal seam, and the area is not large, so there is no value related to the formation of coal mining, so far not find the update statement.
Q: What is the carbon content of different fuels?
The carbon content of different fuels can vary significantly depending on their composition and source. However, in general, fossil fuels such as coal, oil, and natural gas have high carbon content. Coal, which is primarily composed of carbon, typically contains around 60-80% carbon. This makes coal a highly carbon-intensive fuel and a major contributor to greenhouse gas emissions when burned. Crude oil and petroleum products, such as gasoline and diesel, also have high carbon content, ranging from 80-90%. When these fuels are burned, they release significant amounts of carbon dioxide (CO2) into the atmosphere. Natural gas, consisting mainly of methane (CH4), has a lower carbon content compared to coal and oil. Methane itself is composed of one carbon atom and four hydrogen atoms, resulting in a carbon content of around 75%. Although natural gas emits less CO2 when burned compared to coal and oil, methane itself is a potent greenhouse gas, which can contribute to climate change. Renewable fuels, such as biofuels, have varying carbon contents depending on their source. Biofuels are derived from organic materials, such as plants and agricultural waste, and can have carbon contents similar to fossil fuels. However, since biofuels are derived from recently living organisms, the carbon dioxide emitted during their combustion is considered part of the natural carbon cycle and does not contribute to long-term increases in atmospheric CO2 levels. Overall, the carbon content of different fuels is an important factor in determining their environmental impact and contribution to climate change. Transitioning to low-carbon or carbon-neutral fuels is crucial in reducing greenhouse gas emissions and mitigating the effects of climate change.
Q: What are the advantages of carbon-based nanoelectronics?
Several advantages are offered by carbon-based nanoelectronics in comparison to traditional silicon-based electronics. To begin with, exceptional electrical properties are possessed by carbon-based materials such as nanotubes and graphene. They exhibit high electron mobility, enabling them to transport charges at a significantly faster speed than silicon. As a result, electronic devices can operate more efficiently and with increased speed. In addition, excellent thermal properties are exhibited by carbon-based nanoelectronics. They possess the ability to efficiently dissipate heat, thereby reducing the risk of electronic devices overheating. This advantage is particularly beneficial for high-power applications where effective heat management is of utmost importance. Furthermore, carbon-based nanoelectronics have the remarkable characteristic of being extremely thin and flexible. Nanotubes and graphene can be easily manipulated to create electronic components that are ultra-thin and flexible. This allows for the development of innovative devices such as wearable electronics and flexible displays, which were previously unattainable using silicon-based technology. Carbon-based materials also possess a higher mechanical strength in comparison to silicon. They exhibit greater resistance to bending and breaking, resulting in increased durability and longevity. Moreover, carbon-based nanoelectronics hold the potential for scalability. They can be fabricated using various methods such as chemical vapor deposition and solution-based processes, which offer the possibility of large-scale production at lower costs. Lastly, carbon-based nanoelectronics are environmentally friendly. Carbon is a widely available element and does not pose the same environmental concerns as silicon, which requires energy-intensive processes for extraction and purification. In conclusion, carbon-based nanoelectronics offer improved electrical and thermal properties, flexibility, scalability, durability, and environmental sustainability. These advantages make them highly promising for the development of next-generation electronic devices.
Q: How does carbon pricing work?
Carbon pricing is a market-based approach that aims to reduce greenhouse gas emissions by putting a price on carbon emissions. It works by putting a financial cost on the release of carbon dioxide and other greenhouse gases into the atmosphere, which are major contributors to climate change. There are primarily two types of carbon pricing mechanisms: carbon taxes and cap-and-trade systems. Under a carbon tax, a fixed price per ton of carbon emissions is set, and emitters are required to pay this tax based on their emissions. The tax can be levied at various stages of the supply chain, such as at the point of extraction, production, or consumption. The idea behind a carbon tax is to create an economic disincentive for emitting carbon and encourage industries and individuals to reduce their emissions. Cap-and-trade systems, on the other hand, set a limit or cap on the total amount of carbon emissions allowed within a specific jurisdiction. This cap is divided into allowances, which represent the right to emit a certain amount of carbon. These allowances are either allocated or auctioned off to emitters in the form of permits. Emitters can then trade these permits amongst themselves in a market. If an emitter exceeds their allocated allowances, they must purchase additional permits from others who have surplus allowances. This creates a market-based incentive for reducing emissions as those who can reduce their emissions more cost-effectively can sell their extra allowances to those who are unable to. Both carbon taxes and cap-and-trade systems aim to internalize the cost of carbon emissions into the economy, making it more expensive to pollute and incentivizing the adoption of cleaner technologies and practices. By putting a price on carbon, these mechanisms provide economic signals that encourage businesses, industries, and individuals to invest in low-carbon alternatives, energy efficiency, and innovation. They also provide a revenue stream for governments, which can be used to fund climate change mitigation and adaptation efforts, renewable energy projects, or to reduce other taxes. Overall, carbon pricing mechanisms are designed to create economic incentives for reducing greenhouse gas emissions, promoting the transition to a low-carbon economy, and mitigating climate change. While they may not be a silver bullet solution, they are widely recognized as one of the most effective tools to drive emission reductions and combat climate change.
Q: How does carbon impact biodiversity?
Carbon impacts biodiversity in several ways. Firstly, carbon dioxide is a greenhouse gas that contributes to climate change, leading to shifts in temperature and precipitation patterns. These changes can disrupt ecosystems and alter habitats, affecting the distribution and survival of various species. Additionally, excess carbon in the atmosphere can lead to ocean acidification, which negatively affects marine biodiversity by harming coral reefs and other organisms reliant on calcium carbonate structures. Finally, deforestation and land-use changes associated with carbon emissions result in habitat loss, further reducing biodiversity. Overall, carbon emissions have significant and detrimental impacts on the delicate balance of ecosystems and the diversity of life on Earth.
Q: What does carbon nanotubes (5,5) in (5,5) mean?
You can imagine will find a layer of carbon atoms on the plane (5,5) points, grabbed (5,5) and (0,0), the whole plane to roll the overlap is not only two tubular carbon nanotubes (5,5). So the (n, m) and the diameter of the nanotubes have a close relationship.
Q: What are the impacts of carbon emissions on water scarcity?
Water scarcity is significantly impacted by carbon emissions. One way in which carbon emissions contribute to water scarcity is through climate change. The presence of increased carbon dioxide in the atmosphere causes heat to become trapped, resulting in global warming and changes in weather patterns. These altered climate patterns can lead to changes in rainfall, including more frequent droughts and decreased rainfall in certain areas. The consequences of droughts can be particularly severe for water availability. When there is a lack of rainfall, rivers, lakes, and reservoirs can dry up, leaving communities without access to fresh water sources. This scarcity of water affects drinking water, agriculture, and industrial use, impacting both human populations and ecosystems. Moreover, carbon emissions also affect water scarcity by impacting the melting of glaciers and snowpack in mountainous regions. These areas serve as natural water reservoirs, releasing water slowly throughout the year and providing a reliable source of freshwater downstream. However, as temperatures rise due to carbon emissions, glaciers and snowpack melt at a faster rate. This leads to increased water runoff, resulting in flooding and a decrease in water availability during dry seasons. Carbon emissions also indirectly contribute to water scarcity through their influence on sea-level rise. The increased temperatures caused by carbon emissions cause polar ice caps to melt, which in turn raises sea levels. Consequently, saltwater infiltrates coastal aquifers, making the groundwater brackish or undrinkable. This intrusion contaminates freshwater sources, reducing their availability and exacerbating water scarcity. Additionally, carbon emissions contribute to ocean acidification, which harms marine ecosystems. This, in turn, affects the availability of seafood resources, which are an essential source of protein for many people worldwide. The decline in seafood availability puts additional pressure on freshwater resources as it may lead to increased reliance on agriculture, which requires substantial amounts of water. To summarize, carbon emissions have significant impacts on water scarcity. Climate change resulting from carbon emissions alters precipitation patterns, leading to droughts and reduced rainfall. Carbon emissions also accelerate the melting of glaciers and snowpack, reducing water availability in mountainous regions. Furthermore, carbon emissions contribute to sea-level rise, resulting in saltwater intrusion into freshwater sources. These impacts emphasize the urgent need to reduce carbon emissions and mitigate the effects of climate change to ensure the availability of freshwater resources for present and future generations.
Q: What is carbon nanocomposite coating?
Carbon nanocomposite coatings, composed of carbon nanotubes or other carbon-based nanoparticles dispersed within a matrix material like polymer or metal, serve as a protective coating for diverse surfaces. The primary goal of these coatings is to enhance the mechanical, thermal, and electrical properties of the material being coated. By incorporating carbon nanoparticles, the coating gains strength, hardness, and wear resistance, resulting in increased durability. Furthermore, it exhibits exceptional resistance to corrosion, making it suitable for use in severe environments. A key advantage of carbon nanocomposite coatings lies in their ability to offer multifunctional properties. For instance, they can be engineered to possess high electrical conductivity, making them ideal for electronics and electrochemical devices. Additionally, they can exhibit high thermal conductivity, making them valuable for dissipating heat in electronic devices or as a thermal barrier coating. Moreover, carbon nanocomposite coatings have demonstrated promising outcomes in various sectors such as aerospace, automotive, energy, and healthcare. In aerospace, they enhance the performance and longevity of aircraft components. In the automotive industry, they provide anti-scratch and self-cleaning capabilities. In energy applications, they improve solar panel efficiency and protect oil and gas pipelines from corrosion. In healthcare, they enable drug delivery, act as antibacterial coatings, and facilitate bio-sensing applications. In summary, carbon nanocomposite coatings offer a wide array of advantages, including enhanced mechanical and electrical properties, corrosion resistance, and multifunctionality. With continuous research and development, these coatings hold immense potential for different industries, providing innovative solutions to address their unique requirements and challenges.
Q: What is the relationship between carbon emissions and deforestation?
The relationship between carbon emissions and deforestation is closely intertwined. Deforestation refers to the permanent removal of trees and vegetation in forests, usually to make way for agricultural land, urban development, or logging. This process releases large amounts of carbon dioxide (CO2) into the atmosphere, contributing to greenhouse gas emissions and climate change. Trees play a crucial role in mitigating climate change as they absorb CO2 from the atmosphere through photosynthesis and store it in their tissues. When forests are cleared, this carbon storage capacity is lost, and the carbon previously stored in trees is released back into the atmosphere. Deforestation is estimated to be responsible for around 10% of global greenhouse gas emissions. Furthermore, the burning of forests, a common practice during deforestation, also contributes to carbon emissions. When trees are burned, the stored carbon is released as CO2, exacerbating the greenhouse effect. This is particularly significant in tropical regions where deforestation is prevalent, such as the Amazon rainforest. Conversely, reducing deforestation and promoting reforestation can help mitigate carbon emissions. By preserving existing forests and planting new trees, we can enhance carbon sequestration and reduce the amount of CO2 in the atmosphere. Forest conservation and restoration efforts are crucial components of global climate change strategies, as they not only help combat climate change but also preserve biodiversity and provide vital ecosystem services. In conclusion, the relationship between carbon emissions and deforestation is clear: deforestation leads to increased carbon emissions, while forest conservation and reforestation efforts help reduce carbon dioxide levels in the atmosphere. It is essential to prioritize sustainable land-use practices and support initiatives that protect and restore forests to mitigate climate change effectively.
Q: What do you mean by carbon fiber for 1K, 3K, 6K and 12K?
Upstairs copy so much, people watching tired not tired.1K, 3K, 6K, 12K refers to the carbon fiber yarn containing the number of filaments, K is unit (thousand), 1K is 1000 followed, 3K is 3000, and so on, and so on!

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches