• Calcined Petroleum Coke/Calcined Petroleum Coke Price System 1
  • Calcined Petroleum Coke/Calcined Petroleum Coke Price System 2
Calcined Petroleum Coke/Calcined Petroleum Coke Price

Calcined Petroleum Coke/Calcined Petroleum Coke Price

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1 m.t.
Supply Capability:
10000000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

1.Structure of Calcined Petroleum Coke Description

Calcined Petroleum Coke is made from raw petroleum coke,which is calcined in furnace at a high temperature(1200-1300℃).CPC/Calcined Petroleum Coke is widely used in steelmaking,castings manufacture and other metallurgical industry as a kind of recarburizer because of its high fixed carbon content,low sulfur content and high absorb rate.Besides,it is also a best kind of raw materials for producing artifical graphite(GPC/Graphitized Petroleum Coke) under the graphitizing temperature(2800℃).

2.Main Features of the Calcined Petroleum Coke

High-purity graphitized petroleum coke is made from high quality petroleum coke under a temperature of 2,500-3,500°C. As a high-purity carbon material, it has characteristics of high fixed carbon content, low sulfur, low ash, low porosity etc.It can be used as carbon raiser (Recarburizer) to produce high quality steel,cast iron and alloy.It can also be used in plastic and rubber as an additive. 

3. Calcined Petroleum Coke Images

 

Calcined Petroleum Coke/Calcined Petroleum Coke Price

Calcined Petroleum Coke/Calcined Petroleum Coke Price

 

4. Calcined Petroleum Coke Specification

 

CHEMICAL PROPERTIES
UnitLimit Value
AB
FC%98.5 min98.5 min
S%0.5 max0.8max
Ash%0.8 max0.9max
Volatile Matter%0.7 max0.8max
Moisture%0.5 max0.5max
PHYSICAL PROPERTIES
Sizemm0~1 and 1~10 (90% min)
or as per buyer's requirement
PACKING25kgs/bag or 1000kgs/jumbo bag 

 

5.FAQ of Calcined Petroleum Coke

1). Q: Are you a factory or trading company?

A: We are a factory.

2). Q: Where is your factory located? How can I visit there?

A: Our factory is located in ShanXi, HeNan, China. You are warmly welcomed to visit us!

3). Q: How can I get some samples?

A: Please connect me for samples

4). Q: Can the price be cheaper?

A: Of course, you will be offered a good discount for big amount.

 

 

 

Q: In Japanese, what's the difference between adding "carbon" and "sauce" after the name?
Because this is similar to children's pronunciation is very cute, so sometimes good relationship between young people will use "carbon" pronunciation to install cute. So God, many animation or dramas in long sometimes "XX carbon ~" said.
Q: What do you stand for?Tar, smoke, nicotine, and carbon monoxide. What do you mean? What's the size of the smoke, or the size of the smoke? What's the connection? Smoking is harmful, so how do you choose to smoke smaller cigarettes?
The smoke was in the size of a smoker is refers to the amount of nicotine. The smoke is enough to mouth after the majestic. Enough cool,A novice at it. I think most of the carbon monoxide content. Carbon monoxide content is high after the head halo. The novice, this must be kept large. Tar, tar that smoke burning more fully the feeling in the mouth sweet, sweet fragrance..When is the strength of cigarettes and their taste.
Q: How does carbon dioxide contribute to ocean acidification?
Ocean acidification is caused by the presence of carbon dioxide, which forms carbonic acid when it dissolves in seawater. This reaction results in an increase in hydrogen ions and a decrease in pH, making the water more acidic. Human activities, especially the burning of fossil fuels, are leading to a rise in carbon dioxide emissions. As a result, more carbon dioxide is being absorbed by the oceans, disrupting the natural balance between atmospheric and oceanic carbon dioxide levels. This excess absorption leads to an accumulation of carbon dioxide in the seawater. The increased acidity of the seawater poses a significant threat to marine life. Many organisms, such as corals, shellfish, and certain types of plankton, rely on calcium carbonate to construct their shells or skeletons. However, in more acidic water, the availability of carbonate ions, necessary for calcium carbonate formation, decreases. Consequently, these organisms struggle to build and maintain their protective structures, rendering them more susceptible to predation and other dangers. Ocean acidification also has adverse effects on the growth, development, and behavior of numerous other marine species. For example, it can disrupt fish reproductive cycles and alter the behavior of certain species, making them more vulnerable to predators or adversely affecting their ability to locate food or mates. Moreover, ocean acidification can trigger a chain reaction that impacts entire marine ecosystems. The interconnectedness of species in complex food webs means that any disturbance to one species can have far-reaching consequences for others. If the population of a particular fish species declines due to acidification, it can have a ripple effect on the entire food chain, influencing the abundance and distribution of other species. In conclusion, the process of ocean acidification occurs as carbon dioxide dissolves in seawater and forms carbonic acid, resulting in an increase in hydrogen ions and a decrease in pH. This process has detrimental effects on marine organisms, particularly those reliant on calcium carbonate for their shells or skeletons. It also disrupts the growth, development, and behavior of various marine species and can have cascading impacts on entire ecosystems.
Q: What is methane?
Methane is a colorless and odorless gas that is the primary component of natural gas. It is formed from the decay of organic matter and is a potent greenhouse gas.
Q: Is the power consumption of carbon fiber heating very high?
4, environmental protection: power is internationally recognized environmental protection energy, not harmful to human dust, gas, no need to take care of personnel. 5, do not occupy space: heating system ground laying does not occupy interior space, reduce decoration costs, indoor furniture arrangement is convenient. Carbon fiber floor heating advantages and disadvantages - carbon fiber heating, shortcomings 1, need to be replaced frequently thermostat: as a result of the use of sub chamber thermostat frequently, every three to five years need to replace the thermostat, the price is 100-500 yuan. 2, radiation: carbon fiber heating operation will produce certain radiation, long-term use may have an impact on health, especially pregnant women and children. 3, the use of high cost: electricity heating energy source entirely rely on electricity, consumption of large, especially for large residential users, the use of electricity heating, higher costs, generally applicable to small Huxing residential. The above is the advantages and disadvantages of carbon fiber heating, introduced, in general, carbon fiber heating ground heating faster, uniform cooling comfort, for small Huxing, early laying costs are not high, so there is a certain market. If you intend to use it, the sun Yiqun is good, you can learn about
Q: Are carbon cells the same as alkaline batteries?
Unlike, alkaline batteries are 4-5 times the capacity of carbon batteries, and the price is 1.5-2 times that of carbon.Carbon battery full name: neutral zinc manganese dioxide dry cell (zinc-manganese dry battery), belonging to the chemical source of the original battery, is a one-time battery. Because the chemical power unit has an electrolyte that is a non flowing paste, it is also called a dry cell, as opposed to a battery with a flowing electrolyte.
Q: Carbon fiber refractory?
3, pre oxidized carbon fiber cloth, can withstand 200--300 degrees of high temperature
Q: What role does carbon play in the carbon cycle?
The carbon cycle relies heavily on carbon as it circulates through different parts of the Earth. Carbon can be found in both organic and inorganic forms and moves between the atmosphere, oceans, land, and living organisms. This complex cycle involves several interconnected processes, including photosynthesis, respiration, decomposition, and combustion. In the atmosphere, carbon is primarily in the form of carbon dioxide (CO2) gas, which is essential for photosynthesis. During this process, green plants and algae absorb CO2 and convert it into organic compounds like glucose, releasing oxygen as a byproduct. This helps regulate the amount of carbon dioxide in the atmosphere and forms the basis of the food chain. Living organisms break down organic compounds through respiration, releasing energy and producing carbon dioxide as waste. Plants can then immediately reuse this carbon dioxide during photosynthesis, completing the cycle. Additionally, when organisms die, decomposers like bacteria and fungi break down their remains, releasing carbon dioxide back into the atmosphere. The carbon cycle also involves the exchange of carbon with the oceans. Carbon dioxide dissolves in seawater and can be absorbed by marine organisms, such as phytoplankton and corals, during photosynthesis. Over time, the remains of these organisms sink to the ocean floor and can become trapped in sediments, forming fossil fuels like coal, oil, and natural gas. Through geological processes, these fossil fuels can be released back into the atmosphere when burned, contributing to increased carbon dioxide levels. Human activities, like burning fossil fuels and deforestation, have had a significant impact on the carbon cycle. Excessive carbon dioxide emissions from these activities have disrupted the cycle, leading to higher concentrations of carbon dioxide in the atmosphere and contributing to global climate change. In summary, carbon is crucial in the carbon cycle as it is the foundation of life and moves through various parts of the Earth, regulating the climate and supporting life on our planet.
Q: How can carbon capture and storage help reduce greenhouse gas emissions?
Carbon capture and storage (CCS) is a technology that can play a significant role in reducing greenhouse gas emissions. It involves capturing carbon dioxide (CO2) produced from industrial processes or power generation, transporting it, and then storing it underground in geological formations. Firstly, CCS can help reduce greenhouse gas emissions by capturing CO2 directly from large point sources, such as power plants or industrial facilities, that would otherwise be released into the atmosphere. By capturing and storing this CO2, it prevents it from contributing to the greenhouse effect and mitigates its impact on climate change. Secondly, CCS can enable the continued use of fossil fuels, such as coal or natural gas, in a more environmentally friendly manner. These fuels are currently the primary sources of energy for electricity generation and industrial processes. By implementing CCS, the CO2 emissions from these fossil fuel-based activities can be drastically reduced, allowing for a transition towards cleaner energy sources in a more gradual and economically feasible manner. Furthermore, CCS can also be coupled with bioenergy production, creating what is known as bioenergy with carbon capture and storage (BECCS). This process involves using biomass, such as crop residues or purpose-grown energy crops, to produce energy. The CO2 emitted during the bioenergy production is then captured and stored, resulting in a negative emissions process. BECCS can effectively remove CO2 from the atmosphere, helping to offset emissions from other sectors and achieving net-negative emissions. Lastly, CCS can contribute to the decarbonization of hard-to-abate sectors, such as cement and steel production, where alternative low-carbon technologies are currently limited. By capturing and storing CO2 emissions from these sectors, CCS can significantly reduce their overall greenhouse gas emissions and facilitate their transition towards more sustainable practices. In conclusion, carbon capture and storage technology can help reduce greenhouse gas emissions by directly capturing and storing CO2 from large point sources, allowing for the continued use of fossil fuels in a more sustainable manner, enabling the deployment of negative emissions technologies like BECCS, and supporting the decarbonization of hard-to-abate sectors. Implementing CCS alongside other mitigation strategies can play a vital role in achieving global climate goals and combating climate change.
Q: How is carbon used in the production of activated carbon filters?
Activated carbon filters are widely used in various industries and applications, such as water and air purification, gas masks, and even in the production of certain chemicals. In the production of activated carbon filters, carbon plays a crucial role in their effectiveness. Activated carbon, also known as activated charcoal, is a highly porous form of carbon that has a large surface area. This porous structure is achieved through a process called activation, which involves heating carbonaceous materials, such as wood, coal, or coconut shells, at high temperatures in the presence of steam or certain chemicals. The activation process creates tiny pores and increases the surface area of the carbon, allowing it to effectively trap and remove impurities from gases or liquids. These impurities, including organic compounds, volatile organic compounds (VOCs), and certain heavy metals, are attracted to the surface of the activated carbon due to its high adsorption capacity. In the production of activated carbon filters, the activated carbon is typically formed into a granular or powdered form and then packed into a filter medium, such as a cartridge or a mesh. The filter medium acts as a support structure for the activated carbon, allowing the air or water to flow through while capturing and adsorbing the impurities. The activated carbon filters can effectively remove a wide range of contaminants, including chlorine, volatile organic compounds (VOCs), odors, and certain heavy metals. This makes them highly efficient in improving the quality of water and air by reducing pollutants and enhancing odor control. Moreover, the versatility of activated carbon allows for customization depending on the specific application. For example, activated carbon can be impregnated with certain chemicals to enhance its adsorption capacity for specific contaminants, or it can be specially treated to target certain pollutants, such as mercury or arsenic. In summary, carbon is used in the production of activated carbon filters due to its highly porous structure and excellent adsorption properties. These filters are crucial in various industries and applications, effectively removing impurities from water and air, improving their quality, and enhancing overall environmental and human health.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords