• DUCTILE IRON PIPES C Class DN700 System 1
  • DUCTILE IRON PIPES C Class DN700 System 2
  • DUCTILE IRON PIPES C Class DN700 System 3
DUCTILE IRON PIPES C Class DN700

DUCTILE IRON PIPES C Class DN700

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Ductile Iron Cast Pipe is without any defects compare with tradition casting tech, which has many advantages particularly as follow:

(1) High density. In the "vertical upward casting" process, the melt iron of centre liquid column in center crystallizer is continuously feeding for volume shrinkage caused by condensation tube at outer circumference , which lead to be free of shrinkage porosity.

(2) High purity. When melt iron pouring, the mixed impurities such as gas, dross, sand grain which are lighter than melt iron could be eliminated at furnace mouth, its impossible to enter into the crystallizer through the channel, so the melt iron into the crystallizer is very pure.

(3) Strength with toughness. The cooling speed provided by continuous crystallizer is 30 times than sand casting and 5 times than centrifugal casting, and doesn't produce white iron, the eutectic cell volume of continuous cast iron is one eighth to one tenth compare with traditional cast iron. The density of graphite nodule in ductile iron can reach 300-700 pcs/mm2. Therefore, all reason above improve the strength and toughness of continuous cast iron.

(4) Free machining. The high speed cooling make the hardening phase (such as boride, steadite) not appear like reticular, massive or thick, but diffuse like fish bone and pane in shape, moreover, there are tiny graphite flakes inlaid hardening phase. It's free machining in BrinellHardness the range of 250-300HB. However, the Brinell Hardness of 250 is top limit to common metal materials.

(5) Uniform composition of tube wall. The convection mixing of liquid column caused by marching type drawing in crystallizer make the composition of tube wall well-distributed, and concentration gradient very little.

(6) High productivity. To the wall thickness of tube under 10mm, the speed of continuous casting is 1 meter/min, to the wall thickness of tube under 20mm, the speed of continuous casting is 0.5 meter/min, which is high efficiency that centrifugal or other casting tech couldn't reach.


Q: What is the weight of ductile iron pipes compared to other materials?
Ductile iron pipes are generally heavier than other commonly used materials such as PVC or HDPE pipes.
Q: How are ductile iron pipes tested for quality?
Ductile iron pipes are tested for quality using various methods to ensure they meet the required standards and specifications. One common test is the hydrostatic pressure test, which involves subjecting the pipes to water or other liquid under high pressure to check for any leaks or weaknesses. The pipes are typically filled with water and the pressure is gradually increased to a predetermined level. This test helps to identify any potential defects in the pipes that could compromise their integrity. Another important quality test for ductile iron pipes is the tensile test. This test involves pulling a sample of the pipe until it breaks, measuring the amount of force applied and the elongation of the sample. By doing so, the tensile strength and ductility of the pipe can be determined, ensuring it can withstand the required loads and stresses without deformation or failure. In addition to these tests, other quality checks include visual inspection, dimensional checks, and surface defect examinations. Visual inspection involves scrutinizing the pipes for any visible defects such as cracks, voids, or surface irregularities. Dimensional checks ensure that the pipes meet the specified dimensions and tolerances. Furthermore, ductile iron pipes are often subjected to corrosion resistance tests. This is done by exposing the pipes to different corrosive environments, such as saltwater or acidic solutions, to evaluate their resistance to corrosion. This is crucial as it determines the durability and longevity of the pipes, especially in applications where they may be exposed to harsh conditions. Overall, ductile iron pipes undergo rigorous testing to ensure their quality and performance. These tests help guarantee that the pipes meet the required standards, are safe to use, and are capable of withstanding the expected loads and environmental conditions they will encounter in their intended applications.
Q: Can ductile iron pipe be used in areas with high groundwater levels?
Yes, ductile iron pipe can be used in areas with high groundwater levels. Ductile iron is known for its durability and corrosion resistance, making it suitable for underground applications including areas with high groundwater levels.
Q: What is the expected sound attenuation of ductile iron pipes?
The expected sound attenuation of ductile iron pipes can vary depending on various factors such as pipe diameter, thickness, and the surrounding environment. However, ductile iron pipes generally provide good sound attenuation due to their dense and heavy construction, which helps to minimize the transmission of sound waves.
Q: Can ductile iron pipes be used in gravity sewer systems?
Yes, ductile iron pipes can be used in gravity sewer systems. Ductile iron is a strong and durable material that is commonly used in various applications, including sewer systems. It has excellent resistance to corrosion and can withstand high pressure and heavy loads. Additionally, ductile iron pipes have a smooth interior surface, which helps to reduce friction and improve the flow of waste and wastewater. Therefore, they are a suitable choice for gravity sewer systems, where the flow of sewage relies on gravity to move through the pipes.
Q: What are the different types of joints used in ductile iron pipes?
The different types of joints used in ductile iron pipes include push-on joints, restrained joints, mechanical joints, flanged joints, and welded joints.
Q: Can ductile iron pipe be used for wastewater treatment plant sludge dewatering?
Ductile iron pipe is suitable for the dewatering of sludge in wastewater treatment plants. Its durability, strength, and resistance to corrosion make it a popular choice in these facilities. The pipes can withstand the harsh conditions and abrasive characteristics of the sludge dewatering process. Moreover, their leak-proof joints are essential in preventing any sludge leakage during dewatering. Furthermore, ductile iron pipes come in different sizes and are easy to install, making them a convenient option for wastewater treatment plant sludge dewatering.
Q: Can ductile iron pipes be used for water treatment plants?
Indeed, water treatment plants are capable of utilizing ductile iron pipes. The preference for ductile iron pipes in water treatment plants stems from their exceptional qualities of endurance, robustness, and immunity to corrosion. These pipes can effectively manage water systems under immense pressure and endure the ravages of time, thereby facilitating the transportation of substantial volumes of treated water. Moreover, the extended lifespan of ductile iron pipes minimizes the necessity for frequent replacements and upkeep, rendering them an economical selection for water treatment plants.
Q: How are ductile iron pipes protected against erosion caused by high-velocity flow?
Ductile iron pipes are protected against erosion caused by high-velocity flow through various methods and techniques. One common method is the application of protective coatings on the inner surface of the pipes. These coatings create a barrier between the flowing water and the pipe material, reducing the abrasive effects of the high-velocity flow. The coatings used may include epoxy, polyurethane, or cement-mortar lining, depending on the specific requirements of the application. Additionally, manufacturers often design the pipes with increased wall thickness in areas that are prone to erosion, such as bends or areas where the flow velocity is highest. This extra thickness provides additional strength and resistance against erosion. Another technique used to protect ductile iron pipes from erosion is the implementation of flow control devices, such as flow deflectors or velocity-reducing fittings. These devices help to redirect the flow and reduce its velocity, thereby minimizing the impact on the pipe walls. Regular maintenance and inspections are also crucial in preventing erosion. By monitoring the condition of the pipes and identifying any signs of erosion early on, appropriate measures can be taken to address the issue before it escalates. This may involve repairing or replacing damaged sections of the pipes, as well as implementing erosion control measures such as sediment filters or flow restrictors. Overall, a combination of protective coatings, design considerations, flow control devices, and proactive maintenance strategies are employed to ensure that ductile iron pipes are adequately protected against erosion caused by high-velocity flow.
Q: Is the ambient temperature at minus 20 degrees better with grey cast iron or ductile iron?
Ductile iron castings have been used in almost all major industries. These departments require high strength, plasticity, toughness, wear resistance, and resistance to ductile iron

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords