• Deformed Steel Bars Specification System 1
  • Deformed Steel Bars Specification System 2
  • Deformed Steel Bars Specification System 3
  • Deformed Steel Bars Specification System 4
  • Deformed Steel Bars Specification System 5
  • Deformed Steel Bars Specification System 6
Deformed Steel Bars Specification

Deformed Steel Bars Specification

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
170 m.t.
Supply Capability:
50000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel
Shape:
Steel Round Bar

Deformed Steel Bars Specification  


Description of Deformed Steel Bars Specification

1, Diameter: 5.5mm-10mm Deformed Steel Bars Specification 

                       10m- 40mm Deformed Steel Bars Specification

2, Length:  6m, 9m, 12m or customized

3, Standard: GB, ASTM, AISI, SAE, DIN, JIS, EN

                    OEM technology - send detailed technical parameters for accurate quotation.

2, Produce Process: smelt iron - EAF smelt billet - ESR smelt billet - 

                                  hot rolled or forged to get the steel round bar and plate

3, Heat Treatment: annealing, normalizing, tempering, quenching

4, Surface Treatment: Black 

5, Quality Assurance: We accept third party inspection for all orders. 

     You can ask testing organizations such as SGS, BV, etc. to test our products before shipping.

 

Chemical Composition of Deformed Steel Bars Specification

Grade

Technical data of the original chemical composition(%)

Reinforcing steel bar HRB335

C

Mn

Si

S

P

B

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

>0.0008

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 335

≥490

≥16

Reinforcing steel bar HRB400

C

Mn

Si

S

P

B

≤0.25

≤0.16

≤0.80

≤0.045

≤0.045

0.04-0.12

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 400

≥ 570

≥ 14


Products Show of Deformed Steel Bars Specification

Astm 615 Bs4449 B500B Deformed Steel Rebars



Company Information

CNBM International Corporation is the most important trading platform of CNBM group.

Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.

Astm 615 Bs4449 B500B Deformed Steel RebarsAstm 615 Bs4449 B500B Deformed Steel Rebars 


F A Q

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3,  Factory or Trading Company?

      CNBM is a trading company but we have so many protocol factories and CNBM works as a trading department of these factories. Also CNBM is the holding company of many factories.

4, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

5, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

6, After-sale Service?

     CNBM provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.

Q: What are the main characteristics of high-speed steel?
High-speed steel is known for its exceptional hardness, toughness, and heat resistance. It can maintain its hardness even at high temperatures, making it ideal for cutting tools and machining applications. Additionally, high-speed steel has excellent wear resistance, allowing it to withstand heavy usage and prolong tool life. It also has good machinability and can be easily shaped into various cutting tools.
Q: What are the main applications of special steel in the defense aircraft?
Special steels are used in defense aircraft for various critical applications such as manufacturing aircraft components, structures, and armor. These steels possess exceptional strength, durability, and resistance to corrosion and heat, making them suitable for challenging environments. Special steels find applications in components like landing gears, engine parts, rotor blades, and missile systems, where their high performance and reliability are essential for ensuring the safety and effectiveness of defense aircraft.
Q: How does special steel contribute to the energy industry?
Special steel plays a crucial role in the energy industry by providing high-strength, corrosion-resistant materials that are essential for various applications. It is used in the construction of power plants, oil and gas pipelines, and offshore drilling platforms, ensuring the structural integrity and reliability of these critical infrastructure. Special steel also enables the production of more efficient wind turbines and solar panels, enhancing their performance and durability. Additionally, it is utilized in the manufacturing of equipment used in nuclear power plants, where its unique properties ensure safety and long-term operation. Overall, special steel is a vital component in the energy industry, supporting its growth, sustainability, and technological advancements.
Q: How does special steel contribute to the chemical processing industry?
Special steel contributes to the chemical processing industry by offering exceptional resistance to corrosion, high temperatures, and pressure. It is used in the production of various equipment such as valves, pipes, reactors, and heat exchangers, ensuring the safe and efficient handling of corrosive chemicals. Additionally, the unique properties of special steel enable the construction of durable and reliable structures, minimizing downtime and maintenance costs in chemical plants.
Q: Is special steel suitable for manufacturing cutting tools?
Cutting tools benefit greatly from the use of special steel, which is steel that has been specifically designed and processed to possess exceptional properties. This type of steel is known for its high hardness, toughness, and wear resistance. These characteristics make it an ideal choice for cutting tools, as they allow the tools to withstand the high stresses and pressures involved in cutting operations. The hardness of special steel ensures that cutting tools can maintain their sharpness for a longer period of time, resulting in improved cutting performance and efficiency. Furthermore, the toughness of special steel enables cutting tools to resist chipping, cracking, or breaking during use, enhancing their durability and longevity. In addition, the wear resistance of special steel ensures that cutting tools can endure the abrasive forces encountered during cutting operations without significant loss of material or deterioration. This helps to maintain the accuracy and precision of the cutting tools over time. Furthermore, special steel can be customized to meet specific requirements for different cutting applications. For instance, high-speed steel (HSS) is a type of special steel that is particularly suitable for cutting tools used in high-speed machining operations. HSS possesses excellent heat resistance and can retain its hardness even at elevated temperatures. In summary, special steel is highly suitable for manufacturing cutting tools due to its hardness, toughness, wear resistance, and ability to be tailored for specific cutting applications. These properties allow cutting tools to deliver optimal cutting performance, durability, and accuracy.
Q: How is tool and die steel used in the manufacturing of molds and dies?
Tool and die steel is essential in the manufacturing of molds and dies as it provides the required strength, hardness, and durability to withstand the high pressures and temperatures involved in the molding process. It is used to create the core and cavity sections of molds as well as the various components of dies. The steel is carefully selected based on its specific properties to ensure optimal performance and longevity in the production of molds and dies.
Q: What are the different corrosion testing methods used for special steel?
To assess and evaluate the resistance of special steel against corrosion, various testing methods are utilized. These include: 1. Salt Spray Testing: This method involves subjecting the special steel to a controlled mist of saltwater. The steel specimen is placed in a chamber where it is exposed to the mist for a specific duration. The resulting corrosion is visually evaluated and compared to established criteria. 2. Electrochemical Testing: To study the corrosion behavior of special steel, electrochemical techniques like potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) are commonly employed. These methods measure the steel's current and potential responses in different corrosive solutions, providing information on corrosion rate and other electrochemical parameters. 3. Immersion Testing: In this method, the special steel is immersed in a specific corrosive solution for a predetermined period. The solution can be acidic, alkaline, or even simulated seawater, depending on the intended application. The corrosion-induced weight loss or surface damage is then measured and compared to assess the steel's corrosion resistance. 4. Crevice Corrosion Testing: This technique focuses on evaluating the susceptibility of special steel to crevice corrosion, which occurs in confined spaces or gaps. By creating a crevice between the steel specimen and another material and introducing a corrosive solution, the severity of crevice corrosion can be assessed. This can be done by measuring the depth of attack or using electrochemical methods. 5. Intergranular Corrosion Testing: Special steel is sometimes prone to intergranular corrosion, which occurs along the grain boundaries. Tests like the Strauss test or the Huey test are conducted to determine the steel's susceptibility to this form of corrosion. These tests involve immersing the steel in a corrosive solution at elevated temperatures and assessing the extent of intergranular attack. 6. Accelerated Testing: Accelerated corrosion testing methods aim to simulate the long-term effects of corrosion within a shorter time frame. Techniques like cyclic corrosion testing, which involve alternating exposure to different corrosive environments, can provide valuable insights into the steel's performance under realistic conditions in a shorter period. It should be noted that the selection of the corrosion testing method depends on the specific requirements, intended application, and environmental factors to which the special steel will be exposed.
Q: How does special steel contribute to the mining aftermarket industry?
The mining aftermarket industry heavily relies on special steel to improve durability, strength, and resistance in extreme conditions. This particular type of steel is explicitly engineered to withstand the demanding environments and heavy loads associated with mining operations. Within the mining aftermarket industry, special steel is utilized to manufacture a wide range of equipment and components, including drill bits, cutting tools, crusher parts, and wear plates. These components endure intense wear and tear due to the abrasive materials present in mining. Special steel, possessing exceptional hardness and toughness, guarantees that these components can endure harsh conditions and maintain peak performance for extended periods. Moreover, special steel facilitates the creation of more efficient and productive mining equipment. By implementing high-strength steel alloys, manufacturers can design lighter equipment without compromising on strength and durability. This outcome leads to increased productivity and reduced operating costs for mining companies. Special steel also contributes significantly to the safety of mining operations. The robustness and reliability of steel components reduce the risk of unforeseen failures, which can result in accidents and downtime. Additionally, special steel exhibits resistance to extreme temperatures, corrosion, and other environmental factors commonly encountered in mining, minimizing the need for frequent replacements and repairs. In conclusion, special steel is indispensable to the mining aftermarket industry as it provides the essential strength, durability, and resistance to extreme conditions required for mining equipment and components. Its presence enhances productivity, lowers operating costs, and ensures the safety of mining operations, making it a crucial material within the mining industry.
Q: What are the different non-metallic inclusions in special steel?
There are several types of non-metallic inclusions that can be found in special steel. These inclusions are usually formed during the steelmaking process and can have a significant impact on the properties and performance of the steel. One common type of non-metallic inclusion is oxide inclusions. These inclusions are typically formed by the reaction of oxygen with elements present in the steel, such as silicon, manganese, and aluminum. Oxide inclusions can have a detrimental effect on the steel's mechanical properties, such as reducing its toughness and ductility. Another type of non-metallic inclusion is sulfide inclusions. These inclusions are formed by the reaction of sulfur with elements like manganese and iron. Sulfide inclusions can also have a negative impact on the steel's mechanical properties, as they can act as stress concentration sites and promote the initiation of cracks. Nitride inclusions are another type of non-metallic inclusion that can be found in special steel. These inclusions are formed by the reaction of nitrogen with elements like aluminum and titanium. Nitride inclusions can have a positive effect on the steel's properties, as they can improve its strength and hardness. Other types of non-metallic inclusions that can be present in special steel include carbide inclusions, which are formed by the reaction of carbon with elements like iron and chromium, and silicate inclusions, which are formed by the reaction of silica with elements like calcium and aluminum. Overall, the presence and characteristics of non-metallic inclusions in special steel can greatly influence its performance and suitability for specific applications. Therefore, it is important for steel manufacturers to carefully control and minimize the formation of these inclusions in order to produce high-quality steel with desired properties.
Q: How does special steel contribute to electrical conductivity?
Special steel contributes to electrical conductivity by having specific alloying elements, such as chromium, nickel, and manganese, that enhance the material's conductivity properties. These alloying elements improve the steel's ability to carry electrical current by increasing its electron mobility and reducing resistance. Additionally, special steel can be heat-treated to further optimize its electrical conductivity, making it suitable for various electrical applications.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords