Deformed Steel Bar HRB400
- Loading Port:
- China Main Port
- Payment Terms:
- TT or LC
- Min Order Qty:
- -
- Supply Capability:
- -
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Product Description:
OKorder is offering Deformed Steel Bar HRB400 at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Standard | GB | HRB400 | |
Diameter | 6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm, 22mm,25mm,28mm,32mm,36mm,40mm,50mm | ||
Length | 6M, 9M,12M or as required | ||
Place of origin | Hebei, China mainland | ||
Advantages | exact size, regular package, chemical and mechanical properties are stable. | ||
Type | Hot rolled deformed steel bar | ||
Brand name | DRAGON |
Chemical Composition: (Please kindly find our chemistry of our material based on HRB500 as below for your information)
Grade | Technical data of the original chemical composition (%) | ||||||
C | Mn | Si | S | P | V | ||
HRB400 | ≤0.25 | ≤1.60 | ≤0.80 | ≤0.045 | ≤0.045 | 0.04-0.12 | |
Physical capability | |||||||
Yield Strength (N/cm²) | Tensile Strength (N/cm²) | Elongation (%) | |||||
≥400 | ≥570 | ≥14 | |||||
Theoretical weight and section area of each diameter as below for your information:
Diameter(mm) | Section area (mm²) | Mass(kg/m) | Weight of 12m bar(kg) |
6 | 28.27 | 0.222 | 2.664 |
8 | 50.27 | 0.395 | 4.74 |
10 | 78.54 | 0.617 | 7.404 |
12 | 113.1 | 0.888 | 10.656 |
14 | 153.9 | 1.21 | 14.52 |
16 | 201.1 | 1.58 | 18.96 |
18 | 254.5 | 2.00 | 24 |
20 | 314.2 | 2.47 | 29.64 |
22 | 380.1 | 2.98 | 35.76 |
25 | 490.9 | 3.85 | 46.2 |
28 | 615.8 | 4.83 | 57.96 |
32 | 804.2 | 6.31 | 75.72 |
36 | 1018 | 7.99 | 98.88 |
40 | 1257 | 9.87 | 118.44 |
50 | 1964 | 15.42 | 185.04 |
Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..
Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.
Each bundle weight: 2-3MT, or as required
Product Applications:
Deformed Steel Bar HRB400 are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.
Product Advantages:
OKorder's Deformed Steel Bar HRB400 are durable, strong, and resist corrosion.
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Corrosion resistance
· Can be recycled and reused
· Mill test certification
Product Specifications:
Standard: GB
Material: Q235
Origin place: China
FAQ:
Q1: Can stainless steel rust?
A1: Stainless does not "rust" as you think of regular steel rusting with a red oxide on the surface that flakes off. If you see red rust it is probably due to some iron particles that have contaminated the surface of the stainless steel and it is these iron particles that are rusting. Look at the source of the rusting and see if you can remove it from the surface.
Q2: How do we guarantee the quality of our products?
A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.
Q3: How soon can we receive the product after purchase?
A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.
bdenum enhance this surface layer and improve the corrosion resistance of the stainless material.
Images:
- Q: How do steel rebars affect the fire resistance of concrete structures?
- Steel rebars can significantly enhance the fire resistance of concrete structures. The presence of steel rebars within concrete provides reinforcement and prevents the structure from collapsing under high temperatures. The steel rebars act as a heat sink, absorbing and dissipating heat away from the concrete, thereby delaying the onset of structural failure. This improved fire resistance allows concrete structures with steel rebars to maintain their integrity for a longer duration during a fire event, providing valuable time for evacuation and firefighting efforts.
- Q: Can steel rebars be used in renovation or retrofitting projects?
- Yes, steel rebars can definitely be used in renovation or retrofitting projects. Steel rebars are commonly used in construction to reinforce concrete structures, and they can also be used in renovation projects to strengthen existing structures. When renovating or retrofitting a building, it is often necessary to reinforce the existing structure to meet modern building codes or to support additional loads. Steel rebars can be used to strengthen walls, columns, beams, or slabs by adding additional reinforcement to the concrete. By incorporating steel rebars into a renovation project, the structural integrity of the building can be improved, ensuring its safety and longevity.
- Q: How do steel rebars affect the overall thermal stability of a structure?
- The thermal conductivity properties of steel rebars can have a significant impact on the overall thermal stability of a structure. Thermal stability refers to a structure's ability to withstand temperature changes without deformation or damage. Steel rebars possess high thermal conductivity, enabling efficient heat transfer throughout a structure. This characteristic can have positive and negative effects on thermal stability. On the positive side, steel rebars aid in dissipating heat from the structure, preventing heat concentration in specific areas. This prevents localized thermal expansion, which could result in cracks and structural failures. By evenly distributing heat, steel rebars enhance the overall thermal stability. However, steel rebars can also transfer heat to colder areas of the structure, creating thermal gradients. This can cause differential expansion and contraction, leading to stress and potential damage. Additionally, during fire incidents, steel rebars can rapidly heat up and transfer heat to the surrounding concrete, compromising the structure's stability. To mitigate these potential negative effects, engineers and architects must carefully consider the placement, spacing, and design of steel rebars. Proper reinforcement layout and the use of insulation materials can enhance thermal stability. Furthermore, incorporating fire-resistant coatings or insulation around rebars can minimize heat transfer during fires. In conclusion, steel rebars significantly impact the thermal stability of structures. While their high thermal conductivity aids in heat dissipation, it can also lead to thermal gradients and potential damage. By carefully considering design and implementing appropriate measures, the negative effects of steel rebars on thermal stability can be minimized, ensuring the long-term durability and safety of the structure.
- Q: Are there any environmental benefits to using steel rebars?
- Yes, there are several environmental benefits to using steel rebars. Firstly, steel is a highly recyclable material, meaning that it can be reused multiple times without losing its properties. This reduces the need for new steel production, saving energy and reducing greenhouse gas emissions associated with the manufacturing process. Additionally, steel rebars have a long lifespan and are resistant to corrosion, reducing the need for frequent replacements and further minimizing waste. Lastly, steel rebars can contribute to the strength and durability of structures, allowing for longer-lasting buildings and infrastructure, which reduces the environmental impact of constant repairs or reconstructions.
- Q: How do steel rebars contribute to the overall occupant comfort of a building?
- Steel rebars play a crucial role in contributing to the overall occupant comfort of a building in several ways. First and foremost, steel rebars are used to reinforce concrete structures, such as walls, columns, and beams, which provide stability and strength to the building. This ensures that the structure can withstand external forces, such as wind, earthquakes, or heavy loads, without compromising the safety of the occupants. The reinforced concrete also helps to reduce vibrations, minimizing the discomfort caused by movement or shaking of the building. Additionally, steel rebars enhance the durability of the building, preventing cracks and deterioration over time. This is essential for maintaining a comfortable indoor environment as it helps to prevent water leaks, moisture penetration, and the growth of mold or mildew. By preventing these issues, steel rebars contribute to maintaining a healthy and comfortable living space for the occupants. Moreover, steel rebars are often used in the construction of high-rise buildings, which are prone to thermal expansion and contraction. By reinforcing the concrete structure, steel rebars help to minimize the effects of temperature changes, reducing the risk of structural damage and ensuring a consistent indoor temperature. This contributes to a comfortable environment for the occupants, as it helps to regulate the temperature and prevents drafts or heat loss. Furthermore, steel rebars also play a crucial role in fire resistance. Concrete structures reinforced with steel rebars have a higher fire resistance compared to other materials. This is because steel has a high melting point and does not burn, providing additional time for occupants to evacuate the building in the event of a fire. This increased fire resistance contributes to the overall occupant comfort by enhancing their safety and reducing the risk of injuries or fatalities. In conclusion, steel rebars contribute significantly to the overall occupant comfort of a building by providing stability, durability, thermal regulation, and fire resistance. Their role in reinforcing concrete structures ensures the safety, longevity, and functionality of the building, ultimately creating a comfortable and secure environment for the occupants.
- Q: What are the different methods of protecting steel rebars from fire?
- There are several methods for protecting steel rebars from fire. One common approach is to apply a fireproof coating or intumescent paint to the surface of the rebars. This coating expands when exposed to high temperatures, forming an insulating layer that helps protect the steel from the fire. Another method involves encasing the rebars in fire-resistant materials, such as concrete, which provides a barrier against the heat and flames. Additionally, using fireproof sleeves or wraps around the rebars can provide thermal insulation and prevent direct contact with the fire. Lastly, utilizing fireproofing sprays or fire-resistant boards can help protect steel rebars from fire by reducing the transfer of heat.
- Q: What are the advantages of using deformed steel rebars?
- There are several advantages to using deformed steel rebars in construction projects. Firstly, the deformed shape of the rebars provides enhanced bonding with the surrounding concrete. The ridges, bumps, or indentations on the surface of the rebar increase the surface area in contact with the concrete, resulting in improved adhesion. This ensures a stronger bond between the rebar and the concrete, making the overall structure more resistant to forces such as tension, compression, and shear. Secondly, deformed steel rebars offer better resistance to slippage. The irregular surface of the rebar prevents it from easily slipping or moving within the concrete. This is particularly beneficial in structures subject to seismic activity or heavy loads, as it helps to maintain the integrity and stability of the construction. Additionally, the use of deformed steel rebars enhances the overall structural strength and durability of the project. The deformations on the surface of the rebar allow it to better absorb and distribute stress, making it less susceptible to cracking or failure under high loads. This strength and durability make deformed rebars suitable for a wide range of applications, including bridges, high-rise buildings, and industrial structures. Furthermore, deformed steel rebars provide cost-effectiveness in long-term maintenance. The improved bond between the rebar and concrete reduces the risk of corrosion and deterioration over time. This leads to reduced maintenance and repair costs, as the structure remains more resilient and less prone to structural degradation caused by environmental factors. Lastly, deformed steel rebars offer versatility in design. The various types and sizes of deformed rebars available in the market allow engineers and designers to choose the most appropriate option for their specific project requirements. The flexibility in design ensures that the rebars can be tailored to meet the structural demands of different applications, thus contributing to the overall efficiency and safety of the construction project. In conclusion, the advantages of using deformed steel rebars include enhanced bonding with concrete, resistance to slippage, improved structural strength and durability, cost-effectiveness in maintenance, and versatility in design. These advantages make deformed steel rebars a preferred choice in construction projects where strength, stability, and long-term performance are crucial factors.
- Q: How do steel rebars affect the overall construction cost of residential buildings?
- Steel rebars can significantly impact the overall construction cost of residential buildings. While rebars add strength and durability to the structure, they also contribute to increased material and labor expenses. The cost of purchasing and installing rebars, along with associated construction techniques and reinforcing requirements, can raise the overall construction cost. However, considering the long-term benefits of reinforced structures, the investment in steel rebars is justified as it enhances the safety and longevity of residential buildings.
- Q: How do steel rebars provide reinforcement in concrete?
- Steel rebars provide reinforcement in concrete by adding tensile strength to the concrete structure. When concrete is under tension, it tends to crack and fail. However, by embedding steel rebars within the concrete, they resist the tensile forces and prevent the cracks from propagating. This reinforcement ensures that the concrete structure remains strong, durable, and capable of withstanding various loads and stresses.
- Q: What are the guidelines for ensuring proper bond between steel rebars and concrete?
- The guidelines for ensuring proper bond between steel rebars and concrete are crucial to ensure the structural integrity and performance of reinforced concrete structures. Here are some key guidelines to follow: 1. Proper Bar Placement: The rebars should be positioned within the concrete member as per the design specifications, including the required spacing, cover, and lap lengths. The spacing between rebars and the concrete surface should be maintained to provide enough concrete cover and prevent corrosion. 2. Adequate Surface Preparation: The steel rebars should be free from any loose rust, scale, or contaminants that could hinder the bond with the concrete. Surface preparation techniques such as wire brushing, sandblasting, or using a high-pressure water jet can be employed to clean the rebars effectively. 3. Mechanical Bond: Ribbed or deformed rebars offer better mechanical bond with concrete compared to smooth bars. The surface deformations increase the contact area between the rebar and the concrete, enhancing the bond strength. 4. Proper Embedment Length: The embedment length, also known as the development length, is the distance over which the rebar is embedded in the concrete. It is typically calculated based on the required bond strength, concrete strength, and rebar diameter. Adequate embedment length is crucial to achieve the desired bond performance. 5. Concrete Quality: The quality of concrete, including its strength, workability, and curing, plays a significant role in achieving a proper bond with steel rebars. The concrete mix should be proportioned correctly, ensuring adequate cement content, appropriate water-to-cement ratio, and proper compaction during placement. 6. Adequate Concrete Cover: Sufficient concrete cover should be provided around the rebars to protect them from environmental factors, prevent corrosion, and ensure long-term durability. The concrete cover is typically specified in design codes and should be maintained during construction. 7. Proper Reinforcement Splicing: When multiple rebars need to be connected, proper splicing techniques should be employed to ensure a continuous and strong bond. Lap splices, mechanical couplers, or welded splices can be used depending on the design requirements and project specifications. 8. Effective Vibrations: During concrete placement, proper vibration techniques should be employed to ensure adequate compaction and minimize voids or honeycombs around the rebars. This helps to achieve a better bond between the steel rebars and the surrounding concrete. 9. Avoidance of Contamination: The rebars should be protected from contamination during storage and construction. Exposure to excessive moisture, chemicals, or other corrosive substances can compromise the bond between the rebars and the concrete. 10. Adherence to Design Specifications: Finally, it is crucial to strictly adhere to the design specifications and recommendations provided by structural engineers or relevant design codes. These guidelines are tailored to ensure a proper bond between steel rebars and concrete, taking into account various factors such as loadings, environmental conditions, and durability requirements.
Send your message to us
Deformed Steel Bar HRB400
- Loading Port:
- China Main Port
- Payment Terms:
- TT or LC
- Min Order Qty:
- -
- Supply Capability:
- -
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords