• Calcined Anthracite FC80-90 with  stable quality System 1
  • Calcined Anthracite FC80-90 with  stable quality System 2
Calcined Anthracite FC80-90 with  stable quality

Calcined Anthracite FC80-90 with stable quality

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
20 m.t.
Supply Capability:
3000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Packaging & Delivery

25kgs/50kgs/1ton per bag or as buyer's request

Specifications

Calcined Anthracite
Fixed carbon: 90%-95%
S: 0.5% max
Size: 0-3. 3-5.3-15 or as request

 It used the high quality anthracite as raw materials through high temperature calcined at over 2000 by the DC electric calciner with results in eliminating the moisture and volatile matter from anthracite efficiently, improving the density and the electric conductivity and strengthening the mechanical strength and anti-oxidation. It has good characteristics with low ash, low resistvity, low sulphur, high carbon and high density. It is the best material for high quality carbon products.


Advantage and competitive of caclined anthracite:

1. strong supply capability 

2. fast transportation

3. lower and reasonable price for your reference

4.low sulphur, low ash

5.fixed carbon:95% -90%

6..sulphur:lower than 0.3%


General Specification of Calcined Anthracite:

FC80
83858890
ASH161413108.5
V.M.33221.5
S0.50.50.50.50.35
MOISTURE22110.5

Pictures



Calcined Anthracite FC80-90 with  stable quality


We are also strong at below materials, please contact us if you are interested in any of them:

Calcined Petroleum Coke

Carbon Electrode Paste

Carbon Electrode

Q:How does deforestation affect carbon levels?
Deforestation significantly increases carbon levels in the atmosphere. Trees absorb carbon dioxide during photosynthesis, acting as a natural sink for this greenhouse gas. When forests are cut down or burned, they release the stored carbon back into the atmosphere as carbon dioxide. This process contributes to the greenhouse effect, leading to climate change and global warming.
Q:What are the properties of activated carbon?
Activated carbon, also referred to as activated charcoal, possesses a multitude of distinctive characteristics that endow it with high versatility and utility in a variety of applications. 1. Adsorption: The prominent attribute of activated carbon lies in its remarkable adsorptive capacity. Its porous structure grants it an extensive internal surface area, enabling it to efficiently adsorb molecules, ions, and impurities from gases, liquids, and solids. This adsorption capability renders it ideal for purposes of purification, such as water and air filtration, as well as the elimination of toxins and pollutants from industrial processes. 2. Porosity: Activated carbon exhibits an exquisitely porous structure characterized by an intricate network of interconnected pores. This porosity imparts a substantial surface area, facilitating the capture of a significant quantity of contaminants. The pores can be categorized into three types: micropores (less than 2 nm), mesopores (2-50 nm), and macropores (greater than 50 nm), each contributing to its adsorption capacity. 3. Chemical Stability: Activated carbon showcases exceptional chemical stability, rendering it resistant to degradation and disintegration when exposed to diverse chemicals or environments. This property ensures the maintenance of its adsorption capacity over extended periods and under harsh conditions, guaranteeing its efficacy and durability in diverse applications. 4. Selectivity: The surface properties of activated carbon can be modified to confer selectivity towards specific substances. Through various activation processes, such as physical or chemical treatments, the surface chemistry of activated carbon can be altered to enhance its affinity for certain molecules or contaminants, while reducing its affinity for others. This selectivity endows it with effectiveness for particular applications, such as the removal of specific pollutants or the capture of desired compounds. 5. Regenerability: Another advantageous characteristic of activated carbon lies in its capacity for regeneration. Once it reaches its adsorption capacity, it can be regenerated through heating or washing with appropriate solvents, allowing for multiple reuses before requiring replacement. This regenerability not only diminishes operational costs but also contributes to its sustainability and eco-friendliness. 6. Low Density: Activated carbon possesses a comparably low density, imparting it with lightweight properties and ease of handling. This attribute permits its utilization in various systems and devices without contributing excessive weight or bulk. 7. Thermal Stability: Activated carbon exhibits high thermal stability, enabling it to endure elevated temperatures without significant degradation. This property renders it suitable for applications involving high-temperature processes, such as gas purification or catalytic reactions. In summary, the diverse properties of activated carbon, encompassing its adsorption capacity, porosity, chemical stability, selectivity, regenerability, low density, and thermal stability, confer upon it the status of a versatile material widely employed in industries spanning water and air purification, gas separation, chemical processing, pharmaceuticals, and numerous others.
Q:What is carbon neutral?
Carbon neutral refers to achieving a state where the net carbon emissions released into the atmosphere are balanced out by an equivalent amount of carbon removal or offsetting. This is typically achieved by reducing greenhouse gas emissions and investing in projects that remove carbon dioxide from the atmosphere, resulting in no net increase of carbon dioxide levels.
Q:How is carbon dioxide formed?
Various natural and man-made processes contribute to the formation of carbon dioxide. Fossil fuel combustion, including the burning of coal, oil, and natural gas, is a primary source of carbon dioxide. When these fuels are burned for energy or transportation purposes, carbon from hydrocarbons combines with oxygen from the air, resulting in carbon dioxide formation. In addition, carbon dioxide is released through natural occurrences such as volcanic eruptions and respiration by living organisms. During volcanic eruptions, molten rock releases carbon dioxide gas, which is then released into the atmosphere. Similarly, living organisms, including humans, animals, and plants, produce carbon dioxide as a byproduct of respiration, where oxygen is taken in and carbon dioxide is expelled. Furthermore, deforestation and land-use changes play a role in carbon dioxide formation. Trees and plants absorb carbon dioxide through photosynthesis, but when forests are cleared, this natural carbon sink is lost, leading to an increase in atmospheric carbon dioxide levels. Moreover, industrial processes like cement production and chemical reactions in manufacturing also contribute to carbon dioxide release. These processes involve the breakdown or burning of carbon-containing compounds, resulting in the release of carbon dioxide as a waste product. Overall, carbon dioxide is formed through a combination of natural processes and human activities. However, the burning of fossil fuels remains the largest contributor to the heightened levels of carbon dioxide in the atmosphere.
Q:Excuse me, carbon steel, carbon steel pipe, seamless steel pipe, spiral steel pipe, what is the difference?
These nouns do not seem to be a method of division.Carbon steel pipe: refers to the pipe material is carbon steel, from the material on the pipeline division. A pipe that is different from stainless steel pipes and other materials;Carbon steel plate: refers to the pipe rolls are made of carbon steel, divided from making method. It is different from seamless steel tube and spiral steel tube.
Q:Does anyone know what the definition of carbon storage is in ecology? Thank you
If there is no clear definition of books on carbon storage in the understanding of ecology of the individual usually refers to the separation of gaseous carbon dioxide from the atmosphere, through the process of ecology carbon fixed, this process mainly refers to the plants convert carbon dioxide into carbohydrates.In addition, there is now another implication: carbon stripping technology will be used to collect carbon dioxide from human emissions into the air separation of the ground floor storage.
Q:Joint carbide gas incident
The Central Bureau of investigation in India after the disaster had 12 official allegations, including the Union Carbide (India) Co., Ltd. India 8 executives when he was chairman of Warren Anderson and company, two small companies and the company itself and under the. The 1 indicted India executives have been killed, the court 7 days to negligence causing death sentence the remaining 7 India nationals guilty, including the then Indian president Keshub Mahindra is more than 70 years old, many people. According to the charges, they will be sentenced to two years in prison at most. Survivors of the gas leak and their families and local activists gathered in front of the court 7 days ago, holding banners protesting the punishment of the perpetrators too light and late. Since the conviction was made in a local court in India, the defendant had the right to appeal to a higher court, and it was estimated that the process would continue for several years. After the disaster, Anderson, the American boss of the company, returned home soon. Now he lives in New York. In July last year, the court issued an arrest warrant for Anderson, but it has not been mentioned below.
Q:How is carbon used in the production of cosmetics?
Carbon is used in the production of cosmetics in various ways. One of the most common uses of carbon in cosmetics is as a coloring agent. Carbon black, a form of carbon, is used as a pigment in many cosmetic products such as eyeliners, mascaras, and eyeshadows to give them a deep black color. It is also used as a colorant in nail polishes and lipsticks. Carbon is also used in the production of activated charcoal, which has gained popularity in recent years for its detoxifying properties. Activated charcoal is derived from carbon and is used in skincare products such as face masks, cleansers, and scrubs. It is known for its ability to absorb excess oil and impurities from the skin, making it a popular ingredient in products targeting oily and acne-prone skin. Additionally, carbon is used in the manufacturing of exfoliating products. Microbeads, which are tiny particles used in facial scrubs and body washes to remove dead skin cells, can be made from carbon. These microbeads help to gently exfoliate the skin, leaving it smooth and rejuvenated. Furthermore, carbon is used in the production of some cosmetic base materials. For example, carbon is an essential component in the creation of emollients, which are substances that help to moisturize and soften the skin. Emollients are commonly found in creams, lotions, and lip balms, contributing to their hydrating properties. In conclusion, carbon plays a crucial role in the production of cosmetics. From providing color to enhancing the efficacy of skincare products, carbon is a versatile ingredient that contributes to the aesthetics and functionality of various cosmetic formulations.
Q:How can individuals reduce their carbon footprint?
Individuals can reduce their carbon footprint by adopting sustainable lifestyle choices such as conserving energy, using public transportation or carpooling, eating a plant-based diet, reducing waste, and supporting renewable energy sources. Additionally, individuals can also make a difference by planting trees, supporting eco-friendly products, and spreading awareness about climate change.
Q:How to match?Want to breed a batch of roses seedlings, but the seedbed of mud, carbon soil do not know how to get, there is help in this regard...
Clay soil can not be prepared, it was completed by geological changes over the past ten thousand years. Flower cultivation of soil can be self-made, mud carbon 3 points, coconut bran 2 points, perlite a point. The three proportion is 3; 2; 1.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches