• Graphite Electrode Scrap high-purity as carbon additive and carburant System 1
  • Graphite Electrode Scrap high-purity as carbon additive and carburant System 2
  • Graphite Electrode Scrap high-purity as carbon additive and carburant System 3
Graphite Electrode Scrap high-purity as carbon additive and carburant

Graphite Electrode Scrap high-purity as carbon additive and carburant

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
10 m.t
Supply Capability:
5000000 m.t/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing


Specifications:

F.C 98%min and 98.5%min, size: 100mm up 

- Description & Application

Electrode block processing of carburant in steelmaking and casting, than ordinary recarburizer absorption rate is high, easy to melt, can efficiently improve the quality of products and reduce the cost.

- Technical Specification
 

F.C (min)


  98.5%

98%

S (max)


  0.05%

0.05%

ASH (max)


  0.80%

1.00%

Vm (max)


  0.70%

1.00%

H2O (max)


  0.50%

0.50%

SIZE


  100mm up

 

Q: What are carbon nanotubes?
Carbon nanotubes, characterized by their unique structure, are cylindrical formations made solely of carbon atoms. These nanotubes, aptly named due to their minuscule diameter of a few nanometers, can attain remarkable lengths of several centimeters. The distinctive structure of carbon nanotubes grants them extraordinary properties. They exhibit exceptional strength and mechanical characteristics, surpassing steel by a factor of 100 while only weighing one-sixth as much. Furthermore, they possess remarkable thermal and electrical conductivity. Categorically, carbon nanotubes can be classified into two primary types: single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). Single-walled nanotubes consist of a solitary layer of rolled carbon atoms, whereas multi-walled nanotubes comprise several layers of these nested formations. The exceptional properties of carbon nanotubes enable their diverse applications across numerous fields. In the realm of electronics, their high electrical conductivity renders them suitable for use as transistors and interconnects. Additionally, their substantial surface area and electrical conductivity make them ideal for incorporation into energy storage devices like batteries and supercapacitors. Within materials science, carbon nanotubes reinforce composites, enhancing their strength and reducing their weight. Moreover, they exhibit potential applications in medicine as drug delivery systems and imaging agents. Ongoing research endeavors strive to deepen our understanding and harness the potential of carbon nanotubes. Nonetheless, challenges persist regarding their large-scale production, cost-effectiveness, and possible health and environmental ramifications. Overall, carbon nanotubes represent an exhilarating and promising domain of nanotechnology, offering vast possibilities for advancements in various fields.
Q: How do plants and trees absorb carbon dioxide?
Plants and trees absorb carbon dioxide through a process called photosynthesis. Photosynthesis is the process by which plants convert sunlight, water, and carbon dioxide into glucose (sugar) and oxygen. The process takes place in the chloroplasts, which are specialized structures within the plant cells. During photosynthesis, plants absorb carbon dioxide from the atmosphere through tiny pores on their leaves called stomata. The carbon dioxide enters the plant's cells and travels to the chloroplasts. Inside the chloroplasts, energy from sunlight is used to convert the carbon dioxide and water into glucose and oxygen. The glucose produced through photosynthesis is used by the plant as a source of energy for growth, reproduction, and other metabolic activities. Some of the glucose is stored in the plant as starch, while the rest is used to produce other essential compounds. The oxygen produced during photosynthesis is released back into the atmosphere through the stomata. This oxygen is vital for the survival of animals, including humans, as it is necessary for respiration. Overall, plants and trees play a crucial role in absorbing carbon dioxide from the atmosphere through photosynthesis. They act as natural carbon sinks, helping to regulate the levels of this greenhouse gas and mitigate the effects of climate change.
Q: How does carbon affect the formation of tsunamis?
Carbon does not directly affect the formation of tsunamis. Tsunamis are typically caused by underwater earthquakes, volcanic eruptions, or landslides, which are not influenced by carbon. However, carbon emissions and climate change can indirectly impact the frequency and intensity of natural disasters, including some potential triggers for tsunamis, such as volcanic activity or landslides near coastlines.
Q: What is carbon footprint labeling?
Carbon footprint labeling is a system that provides information about the carbon emissions associated with a product or service. It aims to educate consumers about the environmental impact of their purchases and enable them to make more sustainable choices. The labeling typically includes a measure of the greenhouse gas emissions produced during the entire life cycle of a product, including its production, transportation, and disposal. This allows consumers to compare the carbon footprints of different products and make informed decisions based on their environmental values. Carbon footprint labeling is an important tool in promoting sustainability and encouraging businesses to reduce their emissions. It also raises awareness about the impact of individual consumption choices on climate change and encourages a shift towards more environmentally friendly alternatives.
Q: Does iron have more carbon or more steel?
Iron has a high carbon contentThe main difference is that the pig iron, wrought iron and steel carbon content, carbon content of more than 2% of iron is iron;
Q: What are the effects of carbon emissions on human respiratory health?
Human respiratory health can be significantly affected by carbon emissions. Carbon dioxide (CO2) is a primary component of carbon emissions and contributes to both air pollution and climate change. The presence of high levels of carbon dioxide in the atmosphere can result in the concentration of other pollutants like nitrogen oxides, sulfur dioxide, and particulate matter increasing. Exposure to these pollutants, particularly fine particulate matter (PM2.5), has been associated with various respiratory issues. Inhaling PM2.5 can cause irritation in the airways, leading to symptoms such as coughing, wheezing, and breathlessness. It can also worsen existing respiratory conditions like asthma, chronic obstructive pulmonary disease (COPD), and bronchitis. Long-term exposure to elevated levels of PM2.5 has been linked to the development of respiratory diseases and can contribute to higher hospital admissions and mortality rates. Moreover, carbon emissions contribute to the creation of ground-level ozone, a harmful pollutant that plays a significant role in smog formation. Ozone can cause inflammation and damage to the respiratory system, resulting in respiratory symptoms and reduced lung function. It can also aggravate pre-existing respiratory conditions and increase the susceptibility to respiratory infections. Apart from these direct effects, carbon emissions also contribute to climate change, which indirectly impacts respiratory health. Climate change can lead to more frequent heatwaves and extreme weather events, which can worsen air quality and trigger respiratory symptoms. It can also alter the distribution of allergens like pollen, mold spores, and dust mites, thereby increasing the prevalence of respiratory allergies and asthma. Overall, carbon emissions have substantial adverse effects on human respiratory health. They contribute to air pollution, which can cause respiratory symptoms, worsen existing respiratory conditions, and elevate the risk of developing respiratory diseases. Additionally, they contribute to climate change, which indirectly affects respiratory health by influencing air quality and the prevalence of allergens. Therefore, reducing carbon emissions and improving air quality are vital for safeguarding and promoting respiratory health.
Q: What is the role of carbon in organic chemistry?
Organic chemistry heavily relies on carbon, a fundamental element that plays a crucial role in the structure and function of organic compounds. Its exceptional ability to form stable covalent bonds with both carbon and a wide range of other elements leads to the immense diversity of organic molecules found in nature. Carbon's capacity to bond with itself and other elements allows for the creation of long chains, branched structures, and ring systems, resulting in the complex and distinctive shapes characteristic of organic compounds. In the realm of organic chemistry, carbon acts as the foundation for many vital biomolecules essential for life, such as carbohydrates, lipids, proteins, and nucleic acids. It serves as the basis for the structural variety and intricacy observed in living organisms. Additionally, carbon's ability to form multiple bonds and its tetrahedral geometry contribute to the versatility of organic compounds, enabling the presence of various functional groups like hydroxyl, carbonyl, amino, and carboxyl groups. Moreover, carbon's aptitude for undergoing chemical reactions, including oxidation, reduction, addition, substitution, and elimination reactions, holds significant importance in organic chemistry. These reactions are fundamental for synthesizing and modifying organic compounds, facilitating the creation of new molecules with specific properties and functions. Carbon's central role in organic chemistry extends further to the study of reaction mechanisms, stereochemistry, and comprehending the behavior and reactivity of organic compounds. In summary, carbon's exceptional properties and its capacity to form stable covalent bonds with other elements serve as the cornerstone of organic chemistry. Its presence allows for the vast array of organic compounds that exist, while its participation in chemical reactions enables the synthesis and manipulation of these compounds. Without carbon, the field of organic chemistry and the study of life's fundamental building blocks would be impossible.
Q: What are the economic impacts of carbon emissions?
The economic impacts of carbon emissions are significant and wide-ranging. Carbon emissions contribute to climate change, leading to more frequent and severe extreme weather events such as hurricanes, droughts, and heatwaves. These events can result in extensive property damage, loss of agricultural productivity, and increased healthcare costs. Furthermore, carbon emissions contribute to air pollution, which has detrimental effects on human health and productivity. Increased healthcare expenditures, decreased workforce productivity, and higher mortality rates are some of the negative economic consequences associated with air pollution caused by carbon emissions. Additionally, industries that heavily rely on fossil fuels, such as coal and oil, may face economic challenges as governments and consumers increasingly demand cleaner and more sustainable alternatives. This transition towards a low-carbon economy may lead to job losses in carbon-intensive sectors and require significant investments in new technologies and infrastructure. On the other hand, reducing carbon emissions can also create economic opportunities. The growth of renewable energy industries, such as solar and wind power, can create new jobs and foster innovation. Moreover, investing in energy-efficient technologies and practices can lead to cost savings for businesses and households. In summary, the economic impacts of carbon emissions encompass both negative consequences, such as climate-related damages and health costs, as well as potential positive outcomes, including job creation and cost savings through clean energy and efficiency measures. Addressing carbon emissions is crucial for sustainable economic development and long-term prosperity.
Q: How does carbon impact the availability of renewable energy sources?
Carbon impacts the availability of renewable energy sources in several ways. Firstly, carbon emissions from fossil fuel combustion contribute to climate change, which can have detrimental effects on the generation of renewable energy. For instance, rising temperatures and changing weather patterns can reduce the efficiency of solar panels and wind turbines. Secondly, the reliance on carbon-intensive energy sources limits the investment and development of renewable energy technologies. By transitioning to cleaner energy sources, such as solar, wind, and hydroelectric power, we can reduce carbon emissions and enhance the availability and viability of renewable energy options.
Q: What is the boiling point of carbon?
The boiling point of carbon, an element that is not metallic, is determined by its allotrope. Carbon exhibits various allotropes, such as graphite and diamond, each possessing distinct physical characteristics. Graphite, comprising layers of carbon atoms organized in a hexagonal lattice, lacks a boiling point because it directly transitions from a solid to a gas through sublimation. Conversely, diamond, composed of carbon atoms arranged in a three-dimensional lattice, also lacks a boiling point as it undergoes direct sublimation. Consequently, carbon, in its pure elemental form, does not possess a boiling point.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords