Calcined Anthracite Coal with Carbon FC82-90%
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 20 m.t.
- Supply Capability:
- 5000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Packaging & Delivery
Calcined Anthracite Coal with Carbon FC82-90%
25kgs/50kgs/1ton per bag or as buyer's request
Specifications
Calcined Anthracite Coal with Carbon FC82-90%
Fixed carbon: 90%-95%
S: 0.5% max
Size: 0-3. 3-5.3-15 or as request
Advantage:
Calcined Anthracite Coal with Carbon FC82-90%
1. strong supply capability
2. fast transportation
3. lower and reasonable price for your reference
4.low sulphur, low ash
5.fixed carbon:95% -90%
6..sulphur:lower than 0.3%
General Feature:
Calcined Anthracite Coal with Carbon FC82-90%
FC | 90 | 88 | 85 | 83 | 82 |
ASH | 8.5 | 10 | 12 | 14 | 15 |
V.M. | 1.5 | 2 | 3 | 3 | 3 |
S | 0.35 | 0.5 | 0.5 | 0.5 | 0.5 |
MOISTURE | 0.5 | 1 | 1 | 1 | 1 |
Pictures
Calcined Anthracite Coal with Carbon FC82-90%
FAQ:
Calcined Anthracite Coal with Carbon FC82-90%
What can we do?
1.High quality and competitive price.
2.Timely delivery.
3.If any item you like. Please contact us.
Your sincere inquiries are typically answered within 24 hours.
- Q: What are the impacts of carbon emissions on the stability of mountains?
- Carbon emissions have significant impacts on the stability of mountains. One of the most prominent impacts is the acceleration of global warming, which leads to the melting of glaciers and permafrost. As mountains are home to many glaciers, the increase in temperature causes these glaciers to melt at an alarming rate. This melting can result in the destabilization of mountains, leading to increased landslide and rockfall activity. Furthermore, carbon emissions contribute to the acidification of rainwater. Acid rain can erode the rocks and soil in mountains, weakening their stability. This erosion can lead to slope instability, making mountains more susceptible to landslides and other forms of mass movements. Additionally, carbon emissions contribute to changes in precipitation patterns. Mountain ecosystems heavily rely on a delicate balance of rainfall and snowfall. However, climate change caused by carbon emissions disrupts this balance, leading to altered precipitation patterns. This can result in increased water runoff and a reduction in snowpack, both of which contribute to mountain destabilization. Moreover, carbon emissions have indirect impacts on mountain stability through changes in vegetation patterns. As temperatures rise, plant species may migrate to higher altitudes in search of cooler climates. This can result in the loss of vegetation in lower elevation areas, which play a crucial role in stabilizing slopes and preventing erosion. The absence of plant cover leads to increased soil erosion, leaving mountains more vulnerable to landslides and other erosive processes. In conclusion, carbon emissions have detrimental impacts on the stability of mountains. The acceleration of global warming, acidification of rainwater, altered precipitation patterns, and changes in vegetation patterns all contribute to the destabilization of mountains. It is crucial to reduce carbon emissions and mitigate climate change to protect and preserve these majestic natural formations.
- Q: How does carbon affect water quality?
- Water quality can be affected both positively and negatively by carbon. On the positive side, carbon is a natural component of the carbon cycle and has a vital role in maintaining the equilibrium of aquatic ecosystems. It serves as a nutrient for aquatic plants, aiding their growth and providing nourishment and shelter for other organisms in the food chain. However, an excess of carbon in water can have adverse effects on water quality. One way this occurs is through the rise of dissolved organic carbon (DOC). Elevated levels of DOC can result from the decomposition of organic matter, such as deceased plants and animals, as well as the leaching of organic compounds from soil. These organic compounds can harm water quality by diminishing the amount of dissolved oxygen accessible to aquatic organisms, leading to asphyxiation of fish and other aquatic life. Moreover, high levels of carbon can contribute to eutrophication. Eutrophication takes place when there is an overflow of nutrients, including carbon, in water bodies, causing an excessive growth of algae and other aquatic plants. This excessive growth can deplete oxygen levels in the water as the plants decompose, causing harm to fish and other organisms that rely on oxygen for survival. Additionally, carbon can interact with other pollutants present in water, like heavy metals and pesticides, which can become more toxic and readily available when combined with carbon. This can have detrimental effects on aquatic organisms and disrupt the overall balance of the ecosystem. In conclusion, while carbon is vital for the functioning of aquatic ecosystems, excessive amounts can negatively impact water quality by reducing oxygen levels, promoting eutrophication, and increasing the toxicity of other pollutants. Therefore, it is crucial to monitor and manage carbon levels in water bodies to ensure the maintenance of a healthy and balanced aquatic ecosystem.
- Q: Why is the longer the carbon chain, the better the hydrophobic properties?
- I only know that the carbon chain is hydrophobic, so the longer it stronger. But why hydrophobic carbon chain is hydrophobic, hydrocarbon is because of hydrophobic group, the hydrophobic alkyl and why? I don't know, can be very the problem of bai123 (inline station TA) the longer the pure carbon chain, the better the symmetry, the worse the polarity, showing a strong hydrophobic, lqn513 (in station contact TA) similar, compatible ah, polarity is different, compatibility is different, zhu2du1314 (station contact TA), this is obvious......
- Q: How is carbon used in the agricultural industry?
- Carbon is used in the agricultural industry in various ways. One of the main uses is as a fertilizer in the form of organic matter, such as compost or manure, which improves soil fertility and structure. Carbon is also used in carbon sequestration practices, where plants absorb carbon dioxide from the atmosphere and store it in the soil, helping to mitigate climate change. Additionally, carbon-based pesticides and herbicides are used to control pests and weeds in crop production. Overall, carbon plays a significant role in promoting sustainable and efficient agricultural practices.
- Q: What are the effects of carbon emissions on the stability of coastal ecosystems?
- Carbon emissions have significant effects on the stability of coastal ecosystems. One of the primary consequences is ocean acidification, which occurs when excess carbon dioxide dissolves in seawater and lowers its pH. This acidification has detrimental effects on various marine organisms, particularly those that rely on calcium carbonate to build their shells, such as corals, oysters, and some types of plankton. As the water becomes more acidic, it becomes harder for these organisms to form and maintain their protective structures, leading to reduced growth rates, weakened shells, and increased vulnerability to predation and disease. Furthermore, carbon emissions contribute to global warming, resulting in rising sea levels and increased storm intensity. Coastal ecosystems, such as mangroves, salt marshes, and seagrass beds, act as buffers against storm surges and provide crucial habitat for many species. However, with rising sea levels, these ecosystems are at risk of being submerged, leading to the loss of their protective functions and the displacement of numerous plant and animal species. Additionally, climate change caused by carbon emissions alters ocean currents and disrupts the balance of nutrients in coastal waters. This can lead to changes in the distribution and abundance of marine species, affecting the entire food web. For instance, if certain species that serve as a food source or a predator are negatively impacted, it can cause a ripple effect throughout the ecosystem. Such disruptions can lead to reduced biodiversity, loss of key species, and ultimately, the collapse of entire coastal ecosystems. Overall, carbon emissions have far-reaching and detrimental effects on the stability of coastal ecosystems. It is crucial to reduce carbon emissions and mitigate the impacts of climate change to protect these fragile ecosystems and the countless species that depend on them.
- Q: How does deforestation contribute to carbon emissions?
- Deforestation contributes to carbon emissions by releasing large amounts of stored carbon dioxide (CO2) into the atmosphere. Trees act as carbon sinks, absorbing CO2 from the air during photosynthesis and storing it in their biomass. When forests are cleared or burned, this stored CO2 is released back into the atmosphere, adding to greenhouse gas levels and contributing to climate change.
- Q: How does carbon dioxide affect the growth of marine organisms?
- Carbon dioxide affects the growth of marine organisms in several ways. Firstly, increased levels of carbon dioxide in the ocean can lower the pH, leading to ocean acidification. This change in acidity can have detrimental effects on the growth and development of marine organisms, especially those with calcium carbonate shells or skeletons, such as corals, mollusks, and some plankton species. High levels of carbon dioxide can hinder the ability of these organisms to build and maintain their structures, making them more vulnerable to predation and impacting their overall growth and survival. Furthermore, increased carbon dioxide levels can also affect the physiology and metabolism of marine organisms. Some studies have shown that high levels of carbon dioxide can disrupt the functioning of enzymes responsible for various biological processes, including growth and reproduction. This can lead to reduced growth rates, impaired reproductive success, and overall decreased fitness of marine organisms. Additionally, elevated carbon dioxide levels can also indirectly affect marine organisms by altering the availability and distribution of other important nutrients and resources. For example, increased carbon dioxide can influence the solubility of minerals and trace elements, affecting their bioavailability to marine organisms. This can disrupt nutrient cycling and limit the availability of essential nutrients necessary for growth and development. Overall, the increase in carbon dioxide levels due to human activities can have significant negative impacts on the growth and development of marine organisms. These impacts can disrupt entire marine ecosystems, with potentially serious consequences for biodiversity and the functioning of these ecosystems.
- Q: How to distinguish carbon rods to identify carbon fishing rods?
- I'm also waiting to learn! It seems all very busy, the masters are not on-line
- Q: How dnf advanced carbon ashes?
- Before 70, strengthening with carbon, then the activities in the mall to sell high carbon, have to use coupons to buy, that is to improve the success rate of strengthening, now is also the time to rest, 80 edition, replaced by strengthening the body of the colorless, carbon was automatically replaced colorless (1: 5) senior carbon system did not automatically change on the left
- Q: Today in the market to buy Yuba, instructions have such a word that I don't understand, please master Zhijiao: carbon fiber after energized carbon molecule formation of Brown movement, this movement can be effective in most of the electrical energy into the far infrared.
- When it is energized, its motion intensifies, the frequency becomes V2, and the frequency becomes larger, the vibration system is unstable and the frequency is back to its original frequency. So you have to release energy in the form of electromagnetic waves. I am not too clear about the specific release process. I know that the molecules do slow motion and generate additional electromagnetic waves. The frequency of the extra electromagnetic wave emitted is v2-v1, and its frequency falls in the far infrared region.
Send your message to us
Calcined Anthracite Coal with Carbon FC82-90%
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 20 m.t.
- Supply Capability:
- 5000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches