• Bs4449 Deformed Steel Bar with All Sizes System 1
  • Bs4449 Deformed Steel Bar with All Sizes System 2
  • Bs4449 Deformed Steel Bar with All Sizes System 3
  • Bs4449 Deformed Steel Bar with All Sizes System 4
  • Bs4449 Deformed Steel Bar with All Sizes System 5
Bs4449 Deformed Steel Bar with All Sizes

Bs4449 Deformed Steel Bar with All Sizes

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
50000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel
Shape:
Steel Round Bar

Bs4449 Deformed Steel Bar with All Sizes

Description of Bs4449 Deformed Steel Bar:

1, Diameter: 5.5mm-10mm rounds reinforcing steel bar

                       10m- 40 rods reinforcing Bs4449 Deformed Steel Bar

2, Length:  6m, 9m, 12m or customized

3, Standard: GB, ASTM, AISI, SAE, DIN, JIS, EN

                    OEM technology - send detailed technical parameters for accurate quotation.

2, Produce Process: smelt iron - EAF smelt billet - ESR smelt billet - 

                                  hot rolled or forged to get the steel round bar and plate

3, Heat Treatment: annealing, normalizing, tempering, quenching

4, Surface Treatment: Black

5, Quality Assurance: We accept third party inspection for all orders. 

     You can ask testing organizations such as SGS, BV, etc. to test our products before shipping.

Chemical Composition of Bs4449 Deformed Steel Bar:

Grade

Technical data of the original chemical composition(%)

Reinforcing steel bar HRB335

C

Mn

Si

S

P

B

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

>0.0008

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 335

≥490

≥16

Reinforcing steel bar HRB400

C

Mn

Si

S

P

B

≤0.25

≤0.16

≤0.80

≤0.045

≤0.045

0.04-0.12

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 400

≥ 570

≥ 14

Product Show of Bs4449 Deformed Steel Bar:

Verified Suppliers Bs4449 Deformed Steel Bar Manufacturer

Company Information:

CNBM International Corporation is the most important trading platform of CNBM group.

Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.

Verified Suppliers Bs4449 Deformed Steel Bar ManufacturerVerified Suppliers Bs4449 Deformed Steel Bar Manufacturer 

 

FAQ:

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3,  Factory or Trading Company?

      CNBM is a trading company but we have so many protocol factories and CNBM works as a trading department of these factories. Also CNBM is the holding company of many factories.

4, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

5, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

6, After-sale Service?

     CNBM provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.

 



Q: What are the different peening techniques used for special steel?
There are several peening techniques used for special steel, including shot peening, ultrasonic peening, laser peening, and hammer peening. Shot peening involves bombarding the steel surface with small spherical particles to induce compressive stress and improve fatigue resistance. Ultrasonic peening uses high-frequency vibrations to create compressive stress and improve material properties. Laser peening involves using a high-energy laser to generate shockwaves and induce compressive stress. Hammer peening uses mechanical impact from a hammer or similar tool to create compressive stress on the steel surface. These techniques are utilized to enhance the durability, strength, and performance of special steel in various applications.
Q: What are the different passivation techniques used for special steel?
There are several passivation techniques used for special steel, including chemical passivation, electrochemical passivation, and mechanical passivation. Chemical passivation involves using acids or other chemicals to remove surface impurities and create a protective oxide layer. Electrochemical passivation uses an electrical current to remove contaminants and promote the formation of a passive layer. Mechanical passivation involves techniques such as shot peening or sandblasting to physically clean and roughen the surface, enhancing its corrosion resistance.
Q: What are the different coating and plating options for special steel?
There are several coating and plating options available for special steel, including electroplating, galvanizing, powder coating, and ceramic coating. Electroplating involves depositing a layer of metal onto the steel surface using an electric current, providing enhanced corrosion resistance and improved appearance. Galvanizing, on the other hand, involves applying a layer of zinc to the steel through a hot-dip process, protecting it from rust and corrosion. Powder coating involves applying a dry powder to the steel surface, which is then heated to form a protective and durable coating. Ceramic coating, also known as thermal barrier coating, is a high-temperature protective layer that provides excellent resistance to heat and wear. These various options offer different benefits and are chosen based on the specific requirements and desired properties of the special steel.
Q: What are the different forms of special steel?
There are several different forms of special steel, including stainless steel, tool steel, high-speed steel, and alloy steel.
Q: What are the main characteristics of magnetic steel forgings?
Magnetic steel forgings exhibit several key characteristics that make them highly desirable in various industries. Firstly, magnetic steel forgings possess excellent magnetic properties, allowing them to be easily magnetized and demagnetized. This property makes them suitable for applications where magnetism is required, such as in electrical motors and generators. Secondly, magnetic steel forgings possess high strength and durability. Due to the forging process, the steel is compressed and shaped, resulting in a dense and uniform microstructure. This enhances the mechanical properties of the steel, including its tensile strength, impact resistance, and fatigue strength. As a result, magnetic steel forgings can withstand heavy loads and harsh operating conditions, making them ideal for use in demanding applications such as automotive components, industrial machinery, and aerospace parts. Another characteristic of magnetic steel forgings is their excellent corrosion resistance. The forging process helps to refine the grain structure of the steel, making it less susceptible to corrosion and oxidation. This property is crucial in industries where components are exposed to corrosive environments or high temperatures, such as marine applications or oil and gas equipment. Furthermore, magnetic steel forgings offer good machinability and weldability. The forging process not only enhances the mechanical properties of the steel but also improves its machinability, allowing it to be easily shaped and modified into intricate designs. Additionally, magnetic steel forgings can be readily welded without compromising their integrity, providing flexibility in manufacturing and assembly processes. Lastly, magnetic steel forgings exhibit excellent dimensional stability. The forging process involves controlled heating and cooling, which helps to minimize dimensional changes and distortions. This ensures that the final product maintains its shape and dimensions, enabling precise fit and compatibility with other components. In summary, the main characteristics of magnetic steel forgings include excellent magnetic properties, high strength and durability, corrosion resistance, good machinability and weldability, and dimensional stability. These characteristics make magnetic steel forgings highly versatile and widely used in various industries, contributing to their overall success and popularity.
Q: What are the specific requirements for special steel used in the chemical reactor industry?
The specific requirements for special steel used in the chemical reactor industry can vary depending on the specific application and the type of chemicals being processed. However, there are some general requirements that are typically expected for this type of steel. Firstly, the steel used in chemical reactors must have excellent corrosion resistance. Chemical reactors often handle highly corrosive substances, such as acids, alkalis, and other reactive chemicals. Therefore, the steel must be resistant to the corrosive effects of these substances to ensure the integrity and durability of the reactor. Secondly, the steel should have high temperature resistance. Chemical reactions often require high temperatures to facilitate the desired chemical transformations. The steel used in these reactors must be able to withstand these elevated temperatures without losing its structural integrity or undergoing any significant deformation. Furthermore, the steel should have good mechanical properties, including high strength and toughness. The reactor may experience high pressure and mechanical stress during operation, so the steel must be able to withstand these conditions without failure. Additionally, the steel used in chemical reactors should have good weldability and formability. This allows for ease of fabrication and construction of the reactor, ensuring a reliable and efficient manufacturing process. Moreover, the steel should have low levels of impurities, such as sulfur and phosphorus. These impurities can adversely affect the performance of the steel in terms of corrosion resistance and mechanical properties. Therefore, the steel must meet strict quality standards to ensure it is suitable for use in the chemical reactor industry. In summary, the specific requirements for special steel used in the chemical reactor industry include excellent corrosion resistance, high temperature resistance, good mechanical properties, weldability, formability, and low levels of impurities. Meeting these requirements is crucial to ensure the safety, reliability, and efficiency of chemical reactors in various industrial processes.
Q: What are the specific requirements for special steel used in the electronics industry?
In order to meet the unique demands of the electronics industry, special steel must fulfill certain requirements. These requirements include: 1. To protect electronic components from environmental factors like moisture, humidity, and chemical exposure, special steel used in the electronics industry must have high corrosion resistance. 2. Efficient transmission of electricity within electronic devices relies on the excellent electrical conductivity exhibited by the steel. This property is crucial for the proper functioning of electronic components. 3. Depending on the application, special steel used in the electronics industry must possess specific magnetic properties. Some electronics require non-magnetic steel to avoid interfering with sensitive magnetic components, while others may need specific magnetic properties for magnetic shielding or as core material in transformers. 4. To ensure the longevity and reliability of electronic components, the steel must possess high strength and durability, enabling it to withstand the stresses and strains encountered during the manufacturing process and throughout the lifespan of the electronic device. 5. Special steel used in the electronics industry must be able to withstand high temperatures without compromising its structural integrity or electrical properties. This is particularly important in electronic devices that generate heat, such as computer processors or industrial control systems. 6. The steel must be easily formable and machinable to enable efficient manufacturing processes and the production of intricate electronic components. This allows for the fabrication of complex shapes and designs required in the electronics industry. 7. To ensure optimal performance and reliability of electronic devices, special steel used in the electronics industry should have minimal impurities and contaminants. High purity steel guarantees the absence of unwanted elements that may cause electrical or chemical interference. Meeting these specific requirements for special steel used in the electronics industry is crucial for producing high-quality and reliable electronic devices. By fulfilling these requirements, the steel can withstand the challenges and environmental conditions unique to the electronics industry, ultimately contributing to the overall performance and functionality of electronic devices.
Q: How does special steel perform in terms of magnetic properties?
Special steel can exhibit various magnetic properties depending on its composition and processing. Some types of special steel, such as stainless steel, are known for their low magnetic permeability, making them suitable for applications where magnetism needs to be minimized. On the other hand, certain special steels like electrical steel are specifically designed to have high magnetic permeability, making them ideal for use in transformers and electric motors. Overall, the magnetic properties of special steel can be tailored to meet specific requirements, offering versatility in different applications.
Q: How does special steel perform in renewable energy applications?
Special steel performs exceptionally well in renewable energy applications due to its unique properties and characteristics. It offers high strength, durability, and corrosion resistance, making it ideal for withstanding the harsh environmental conditions typically found in renewable energy projects. Special steel is commonly used in wind turbine components, solar panel frames, hydroelectric power plant infrastructure, and geothermal power systems. Its superior mechanical properties ensure efficient energy generation and long-term performance, contributing to the overall success and sustainability of renewable energy applications.
Q: How does the microstructure of special steel affect its performance?
The microstructure of special steel plays a crucial role in determining its performance. It influences various mechanical properties such as strength, hardness, toughness, and wear resistance. By controlling the arrangement and size of the steel's grains, as well as the presence of any additional phases, manufacturers can tailor the material to meet specific requirements. For instance, a finer grain structure can enhance strength and hardness, while a uniform distribution of carbides can improve wear resistance. Consequently, optimizing the microstructure allows special steel to exhibit superior performance characteristics in specific applications.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords