• Alloy Steel TC105 Special Steel Carbon Steel System 1
  • Alloy Steel TC105 Special Steel Carbon Steel System 2
  • Alloy Steel TC105 Special Steel Carbon Steel System 3
Alloy Steel TC105 Special Steel Carbon Steel

Alloy Steel TC105 Special Steel Carbon Steel

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Alloy Steel
Shape:
Steel Round Bar
Standard:
AISI,JIS,GB,BS,DIN,API,EN,ASTM
Thickness:
as required
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Length:
as required
Net Weight:
as required

 Chemical Composition%

CountryStandardCSiMnCrSP
China(GB)T10A0.95-1.04≤0.35≤0.40-≤0.030≤0.030
USA(ASTM)W1100.95-1.10≤0.35≤0.35≤0.20--
Germany(DIN)1.16451.00-1.100.10-0.300.10-0.35-≤0.030≤0.030
Japan(JIS)SK1051.00-1.100.15-0.350.15-0.50≤0.30≤0.030≤0.030

 

Available Size

Rolled flat steel20-100mm×205-600mm×L
Forged flat steel110-300mm×400-600mm×L

 

Heat Treatment

ItemTemperature ℃Hardness
Anneal750-760℃≤210HB
Quenching770-790℃62-64HRC
Tempering160-250℃58-62HRC

 

Characterstics

1.Low quenching temperature 
2.Higher hardness and abrasion resistance after heat treatment
3.poor hardening ability and notable deformation 

 

Applications:  Suitable for cold working dies and plastic moulds with simple shape

.jpg

Alloy Steel TC105 Special Steel Carbon Steel

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

4, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

6, After-sale Service?

    We provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.


Q: What is the role of special steel in the defense industry?
Special steel plays a crucial role in the defense industry by providing materials with exceptional strength, durability, and resistance to extreme conditions. It is used in the manufacturing of various defense equipment, including armored vehicles, naval vessels, aircraft, and firearms. Special steel ensures superior performance and protection, helping to enhance the safety and effectiveness of military operations.
Q: What is the difference between general steel and special steel?
Pu steel: full name ordinary steel, mostly with plates, profiles and wire form. Ordinary steel is the basic material of the earliest, the largest amount of use in industry, widely used in architectural structure, bridge components, hull structure, transportation, machinery manufacturing, agriculture, textile, defense industry, metal products, food industry, household appliances and other various departments of the national economy.
Q: How does special steel perform in extreme cold temperatures?
Special steel is custom-made to excel under frigid conditions, with alloys that possess a high level of low temperature ductility. This quality enables the steel to maintain its structural integrity even in the harshest cold settings, making it a popular choice in Arctic exploration, oil and gas operations in cold regions, and the aerospace industry. A key distinguishing feature of special steel is its resistance to brittleness when exposed to low temperatures. Unlike regular steel, which becomes brittle and susceptible to cracking in extreme cold, special steel retains its toughness, rendering it suitable for sub-zero conditions. This remarkable attribute is achieved through meticulous selection and control of the alloy's composition, allowing for a superior balance between strength and ductility. Moreover, special steel boasts exceptional resistance to corrosion, a particularly crucial trait in cold environments where exposure to snow, ice, and moisture is prevalent. The alloying elements present in special steel, such as chromium and nickel, generate a protective oxide layer on the surface, successfully preventing corrosion and preserving the steel's structural integrity. Additionally, special steel exhibits remarkable thermal conductivity, enabling efficient heat transfer even in extremely cold temperatures. This thermal property is of paramount importance in applications where effective heat management is essential, such as in the aerospace industry or in equipment operating in cold climates. In summary, special steel is meticulously engineered to excel in extreme cold temperatures. Its low temperature ductility, resistance to brittleness, corrosion resistance, and thermal conductivity establish it as a dependable and enduring material for diverse applications in cold environments.
Q: What are the different methods of machining special steel?
There are several different methods of machining special steel, each with its own advantages and applications. Some of the most common methods include: 1. Turning: Turning is a machining process that involves rotating a workpiece while a cutting tool removes material from the surface. This method is typically used to create cylindrical shapes and can produce high-quality finishes. 2. Milling: Milling is a versatile machining method that uses rotary cutters to remove material from a workpiece. It can be used to create complex shapes and contours, and is often employed in the production of special steel components. 3. Drilling: Drilling is a machining process that involves creating holes in a workpiece using a rotating cutting tool. It can be used to create both through holes and blind holes in special steel, and is commonly used in various industries. 4. Grinding: Grinding is a precision machining method that uses an abrasive wheel to remove material from a workpiece's surface. It is often used to achieve tight tolerances and smooth finishes on special steel components. 5. Broaching: Broaching is a machining process that uses a sharp cutting tool with multiple teeth to remove material in a series of linear cuts. It is commonly used to create keyways, splines, and other intricate shapes in special steel. 6. Electrical Discharge Machining (EDM): EDM is a non-traditional machining method that uses electrical discharges to remove material from a workpiece. It is particularly useful for machining special steel with complex shapes or for creating small features. 7. Laser Cutting: Laser cutting utilizes a high-powered laser to cut through special steel with extreme precision. It is commonly used for intricate designs and can produce smooth edges without the need for subsequent processing. Each of these methods has its own advantages and limitations, and the choice of machining method depends on factors such as the desired outcome, the complexity of the part, and the properties of the special steel being machined.
Q: What are the different casting techniques used for special steel?
There are several casting techniques used for special steel, including investment casting, continuous casting, sand casting, and centrifugal casting. These techniques allow for the production of complex shapes, improved surface finish, and precise control over the metallurgical properties of the steel. Each technique has its advantages and is used depending on the specific requirements of the final product.
Q: What are the different methods of surface ion nitriding for special steel?
There are several methods of surface ion nitriding that can be used for special steel. These methods include: 1. DC Plasma Nitriding: This method involves the use of a direct current (DC) plasma to ionize nitrogen gas and create a plasma atmosphere. The special steel is placed in the plasma chamber and a high voltage is applied to accelerate the ions towards the surface of the steel, resulting in nitriding. 2. RF Plasma Nitriding: RF (Radio Frequency) plasma nitriding is a similar process to DC plasma nitriding, but instead of using a direct current, a radio frequency power supply is used to generate the plasma. This method allows for better control of the nitriding process and can be used for more complex geometries. 3. Pulse Plasma Nitriding: In this method, short pulses of high voltage are applied to the steel surface, creating a plasma discharge. The pulses are repeated at regular intervals, allowing for precise control over the nitriding process. This method is often used for steels with sensitive properties that can be affected by prolonged exposure to high temperatures. 4. Plasma Assisted Nitriding: This method combines plasma nitriding with other surface treatment techniques, such as physical vapor deposition (PVD) or chemical vapor deposition (CVD). The steel is first coated with a thin layer of a reactive material, and then nitrided in a plasma atmosphere. This combination of techniques can enhance the surface properties of the special steel, such as wear resistance or corrosion resistance. 5. Glow Discharge Nitriding: This method involves placing the special steel in a chamber filled with a nitrogen-rich gas, such as ammonia. A high voltage is applied to create a glow discharge, which ionizes the gas and generates nitrogen ions that diffuse into the surface of the steel. This method is commonly used for small parts or components with complex shapes. It is important to note that the selection of the most appropriate method for surface ion nitriding of special steel depends on factors such as the desired properties, the geometry of the steel, and the specific requirements of the application.
Q: What are the requirements for special steel used in nuclear power plants?
Stringent and critical requirements must be met for the special steel used in nuclear power plants to guarantee the safe and reliable operation of these facilities. Some of the key requirements include: 1. Exceptional strength and durability: The special steel must possess remarkable strength and durability to endure the extreme conditions and stresses found in nuclear power plants, such as high temperatures, pressure, and radiation levels. 2. Corrosion resistance: Corrosion can severely compromise the integrity of steel components in a nuclear power plant. Therefore, the special steel must exhibit high resistance to corrosion, including both general and localized corrosion, such as pitting and crevice corrosion. 3. Low neutron absorption: Neutron absorption plays a crucial role in the performance of reactor core materials in nuclear power plants. Therefore, the special steel used should have low neutron absorption characteristics to minimize interference with neutron flux and avoid any adverse effects on the overall operation and safety of the plant. 4. Radiation resistance: Nuclear power plants generate significant levels of radiation that can affect the properties and performance of materials over time. The special steel must be able to withstand radiation-induced embrittlement, degradation, and other forms of radiation damage, ensuring long-term mechanical integrity. 5. Compliance with regulations: The steel used in nuclear power plants must meet stringent regulatory standards and codes, such as those established by the Nuclear Regulatory Commission (NRC) in the United States or the International Atomic Energy Agency (IAEA) internationally. Compliance with these regulations ensures that the steel meets the necessary safety criteria and has been manufactured and tested to the highest standards. 6. Traceability and documentation: The traceability of the special steel used in nuclear power plants is of utmost importance. It is crucial to maintain comprehensive documentation, including material certifications, test reports, and manufacturing records, to ensure that the quality and origin of the steel can be verified throughout its lifecycle. In summary, the requirements for special steel used in nuclear power plants revolve around its ability to withstand extreme conditions, resist corrosion and radiation, comply with strict regulatory standards, and provide long-term structural integrity. These requirements are essential for the safe and efficient operation of nuclear power plants and the protection of human health and the environment.
Q: How does special steel contribute to the aerospace turbine industry?
The aerospace turbine industry greatly relies on special steel due to its unique advantages that cannot be found in other materials. Special steel is renowned for its exceptional strength and durability, making it perfect for enduring the extreme conditions within aerospace turbines. The demanding temperatures, pressures, and rotational speeds experienced by turbine components necessitate a material that can withstand these harsh conditions without compromising performance or safety. Furthermore, special steel demonstrates excellent heat resistance and corrosion resistance properties, which are vital for the longevity of turbine components. Its ability to resist oxidation and corrosion enables special steel to maintain its structural integrity and functionality over extended periods, reducing the need for frequent maintenance or replacement. Moreover, special steel offers outstanding machinability and formability, enabling the production of intricate and complex turbine components. This facilitates the creation of highly efficient and precisely engineered turbine blades, vanes, and other crucial parts necessary for the optimal performance of aerospace turbines. Additionally, special steel provides the necessary characteristics for enhanced fuel efficiency in aerospace turbines. By utilizing high-strength special steel alloys, turbine manufacturers can design lighter and more aerodynamic components, resulting in reduced overall weight and drag. Consequently, this leads to increased fuel efficiency and lower emissions, contributing to a more sustainable and environmentally friendly aviation industry. In conclusion, special steel plays a vital role in the aerospace turbine industry by delivering the required strength, durability, heat resistance, corrosion resistance, and machinability essential for the efficient and dependable operation of turbine components. Its contribution extends to improved fuel efficiency, reduced maintenance needs, and enhanced overall performance, establishing it as an indispensable material for the aerospace turbine industry.
Q: Can special steel be used in the manufacturing of consumer goods?
Yes, special steel can be used in the manufacturing of consumer goods. Special steel, with its superior strength, durability, and corrosion resistance properties, can be utilized in various consumer products such as kitchen appliances, cutlery, watches, automotive parts, and electronics. Its use enhances the performance and longevity of these goods, making them more reliable and efficient for consumers.
Q: How does special steel contribute to the manufacturing of valves and pumps?
The manufacturing of valves and pumps heavily relies on special steel, which possesses exceptional strength, durability, and corrosion resistance properties. These properties make it highly suitable for these critical components. Valves and pumps play a vital role in various industrial processes, including oil and gas, chemical, and power generation industries. Their function is to control the flow of fluids or gases, ensuring efficient and safe operations. Special steel is used in these applications due to its ability to withstand extreme pressure, high temperatures, and aggressive chemicals. One of the primary advantages of special steel in valve and pump manufacturing is its strength. These components often operate under immense pressure, and ordinary steel may not possess the necessary strength to withstand these conditions. In contrast, special steel has enhanced tensile strength, enabling valves and pumps to endure high-pressure environments without deforming or failing. Corrosion resistance is another crucial aspect of special steel. Valves and pumps frequently come into contact with corrosive substances, such as saltwater, acids, or chemicals. Special steel is engineered to resist corrosion, preventing the degradation of these components and ensuring their longevity. By utilizing special steel, manufacturers can create valves and pumps that can withstand harsh environments and corrosive substances, reducing maintenance costs and downtime. Additionally, special steel offers excellent durability, which is essential for valves and pumps that need to operate continuously for extended periods. These components experience constant wear and tear due to fluid flow and pressure fluctuations. Special steel's resistance to fatigue and wear ensures that valves and pumps can function reliably and efficiently over time, minimizing the risk of breakdowns and extending the equipment's lifespan. In conclusion, special steel is indispensable in valve and pump manufacturing. Its exceptional strength, corrosion resistance, and durability properties make it an ideal material for these critical components. By utilizing special steel, manufacturers can produce valves and pumps that can withstand extreme conditions, resist corrosion, and operate reliably, contributing to safer and more efficient industrial processes.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords