• A110*110*9 Equal steel Angle for construction System 1
  • A110*110*9 Equal steel Angle for construction System 2
  • A110*110*9 Equal steel Angle for construction System 3
  • A110*110*9 Equal steel Angle for construction System 4
A110*110*9 Equal steel Angle for construction

A110*110*9 Equal steel Angle for construction

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

Specifications of JIS SS400 Angle Steel

1.Standards:GB,ASTM,BS,AISI,DIN,JIS

2.Invoicing on theoretical weight or actual weight as customer request

3.Material: JIS G3192,SS400;SS540.

4. Payment terms:

1).100% irrevocable L/C at sight.

2).30% T/T prepaid and the balance against the copy of B/L.

3).30% T/T prepaid and the balance against L/C

5.Sizes:

JIS SS400 Angle Steel

EQUAL ANGLES SIZES

 

a(mm)

a1(mm)

thickness(mm)

length

25

25

2.5---3.0

6M/12M

30

30

2.5---4.0

6M/12M

38

38

2.5

6M/12M

38

38

3.0---5.0

6M/12M

40

40

3.0---6.0

6M/12M

50

50

3

6M/12M

50

50

3.7---6.0

6M/9M/12M

60

60

5.0---6.0

6M/9M/12M

63

63

6.0---8.0

6M/9M/12M

65

65

5.0---8.0

6M/9M/12M

70

70

6.0---7.0

6M/9M/12M

75

75

5.0---10.0

6M/9M/12M

80

80

6.0---10.0

6M/9M/12M

90

90

6.0---10.0

6M/9M/12M

100

100

6.0---12.0

6M/9M/12M

120

120

8.0-12.0

6M/9M/12M

125

125

8.0---12.0

6M/9M/12M

130

130

9.0-12.0

6M/9M/12M

140

140

10.0-16.0

6M/9M/12M

150

150

10---15

6M/9M/12M

160

160

10---16

6M/9M/12M

180

180

12---18

6M/9M/12M

200

200

14---20

6M/9M/12M

5. Material Specifications:

Grade

Yield StrengthN/mm²

Extension Strength N/mm²

Thickness of Steel,mm

16

16-40

40-100

100

SS330

205

195

175

165

330-430

SS400

245

235

215

205

400-510

SS490

285

275

255

245

490-610

SS540

400

390

-

-

540

Usage & Applications Angle Steel

Trusses;

Transmission towers;

Telecommunication towers;

Bracing for general structures;

Stiffeners in structural use.

Packaging & Delivery of Angle Steel

1. Transportation: the goods are delivered by truck from mill to loading port, the maximum quantity can be loaded is around 40MTs by each truck. If the order quantity cannot reach the full truck loaded, the transportation cost per ton will be little higher than full load.

2. With bundles and load in 20 feet/40 feet container, or by bulk cargo, also we could do as customer's request.

3. Marks:

Color mark: There will be color marking on both end of the bundle for the cargo delivered by bulk vessel. That makes it easily to distinguish at the destination port.

Tag mark: There will be tag mark tied up on the bundles. The information usually including supplier logo and name, product name, made in China, shipping marks and other information request by the customer.

If loading by container the marking is not needed, but we will prepare it as customer request.


Production flow of Angle Steel

Material prepare (billet) —heat up—rough rolling—precision rolling—cooling—packing—storage and transportation

A110*110*9 Equal steel Angle for construction

A110*110*9 Equal steel Angle for construction

A110*110*9 Equal steel Angle for construction

Q: Are steel angles load-rated?
Yes, steel angles are load-rated. Steel angles are structural elements that are commonly used in construction and engineering applications. They are designed to withstand various types of loads, including axial loads, bending loads, and shear loads. The load rating of a steel angle refers to its maximum capacity to support a specific amount of load without failure. Load ratings for steel angles are determined through extensive testing and analysis, considering factors such as the material properties, geometry, and design standards. Load ratings are typically provided by manufacturers, and engineers use these ratings to ensure the structural integrity and safety of a project.
Q: Can steel angles be used in mining or quarrying machinery?
Yes, steel angles can be used in mining or quarrying machinery. Steel angles are commonly used in the manufacturing of heavy-duty machinery and equipment due to their strength, durability, and versatility. They can be used to support and reinforce structural components, provide stability, and enhance the overall performance and safety of mining or quarrying machinery.
Q: What are the different types of connections used for steel angles in structural applications?
Steel angles in structural applications can be connected using various types of connections. These connections play a crucial role in maintaining the stability and strength of the overall structure. Firstly, welded connections are commonly used. This method involves fusing the edges of the steel angles together through melting, resulting in a strong bond. Welded connections are ideal for applications that require high strength and rigidity. Secondly, bolted connections provide flexibility as they involve using bolts and nuts to secure the steel angles. This type of connection allows for easy disassembly and reassembly if needed. Bolted connections are often chosen for their ease of installation and maintenance. Thirdly, riveted connections are a traditional method of joining steel angles. This involves inserting a rivet through holes in the steel angles and flaring the ends to secure them. Although riveted connections are known for their durability and resistance to corrosion, they are less commonly used today due to the time-consuming installation process. Next, clip connections utilize metal clips or brackets to attach the steel angles quickly and efficiently. These clips can be welded or bolted to the angles, making them suitable for applications where speed and ease of installation are important. Lastly, gusset plate connections involve using steel plates to connect the steel angles at their intersection points. These plates are typically welded or bolted to the angles, enhancing the strength and stability of the connection. Gusset plate connections are often employed when larger forces and moments need to be transferred. It is essential to consider the specific needs of the structure, including the structural requirements, loadings, and the intended application, when choosing the appropriate connection method. Adhering to design and engineering specifications ensures that the selected connection method is suitable for the desired use in structural applications.
Q: How do you calculate the bending stress in a steel angle?
To calculate the bending stress in a steel angle, you need to understand the basics of bending moment and the moment of inertia of the angle. First, you will need to determine the bending moment acting on the steel angle. This can be done by considering the applied load or force and its distance from the point of rotation. The bending moment is calculated as the product of the applied load and the distance between the point of rotation and the line of action of the force. Next, you will need to determine the moment of inertia of the steel angle. The moment of inertia measures the resistance of an object to changes in its rotational motion. It depends on the shape and size of the object. In the case of a steel angle, the moment of inertia can be calculated using the appropriate formula for the specific cross-sectional shape of the angle. Once you have determined the bending moment and the moment of inertia, you can calculate the bending stress using the formula: Bending Stress = (Bending Moment * Distance from Neutral Axis) / Moment of Inertia The bending stress represents the internal resistance within the steel angle to the bending moment. It is typically expressed in units of force per unit area, such as pounds per square inch (psi) or newtons per square meter (Pa). It is important to note that the calculation of bending stress assumes that the steel angle behaves elastically, meaning it is not subjected to excessive deformation or permanent damage. If the applied bending moment exceeds the elastic limit of the steel angle, plastic deformation or failure may occur, and a different analysis method would be required.
Q: How do you design bracing using steel angles?
When it comes to designing bracing using steel angles, there are several important steps to take into account. In the first place, it is crucial to ascertain the loads that the bracing will need to withstand. These loads can include vertical or horizontal forces, or a combination of both. Understanding the magnitude and direction of these forces is essential in order to design bracing that is effective. Next, it is necessary to select the appropriate steel angles. Steel angles come in various sizes and thicknesses, and the specific dimensions will depend on the desired strength and stiffness of the bracing. It is important to choose angles that can adequately resist the expected loads without experiencing excessive deflection or failure. Once the steel angles have been chosen, the bracing system must be designed to provide optimal stability. This involves determining the spacing and arrangement of the angles in order to ensure that the bracing effectively withstands the applied loads. The angles should be strategically positioned to create a stable and rigid structure. Furthermore, the connections between the steel angles and the main structural members must be designed with care. Adequate connections are crucial in transferring the loads from the bracing to the main structure. These connections should be strong, durable, and capable of transmitting both tension and compression forces. During the design process, it is also important to take into consideration any potential issues related to buckling or instability. Steel angles may be prone to buckling under certain loading conditions, and appropriate measures should be taken to prevent this. This can include adding additional bracing members, stiffeners, or using thicker angles if necessary. Lastly, it is crucial to consult relevant design codes and standards to ensure compliance with industry guidelines and regulations. These codes provide valuable guidance on the design, fabrication, and installation of steel bracing systems. To sum up, the process of designing bracing using steel angles involves determining the loads, selecting appropriate angles, designing an effective bracing system, ensuring proper connections, addressing stability concerns, and following relevant design codes and standards. By carefully considering these factors, it is possible to create a well-designed bracing system that provides the necessary support and stability to the structure.
Q: What are the different surface treatments for steel angles?
Some common surface treatments for steel angles include galvanizing, painting, powder coating, and plating.
Q: Are steel angles resistant to vibrations?
The strength and durability of steel angles are well-known, but their ability to resist vibrations can vary due to factors like steel thickness, quality, angle design, and application. Generally, steel angles possess good stiffness and can somewhat dampen vibrations. However, if vibrations are intense or if the angle is poorly designed or installed, it may be prone to fatigue failure or excessive movement. To improve vibration resistance, one can employ measures like using thicker steel angles, incorporating proper bracing or support structures, or utilizing vibration damping materials. Therefore, it is crucial to consider the specific requirements and conditions of the application when assessing the suitability of steel angles for vibration resistance.
Q: Are steel angles resistant to chemicals?
Yes, steel angles are generally resistant to chemicals due to their high durability and corrosion resistance. However, their resistance may vary depending on the specific type of chemical and environment they are exposed to.
Q: Are steel angles suitable for mezzanine floors?
Yes, steel angles are suitable for mezzanine floors. Steel angles are commonly used in the construction of mezzanine floors due to their strength, durability, and cost-effectiveness. They provide structural support and stability, allowing for the creation of additional floor space. Steel angles can be easily fabricated and installed, making them a popular choice for mezzanine floor construction. They can withstand heavy loads and provide a stable platform for various applications such as storage, offices, or additional workspace. Additionally, steel angles can be customized to fit specific design requirements, making them a versatile option for mezzanine floor construction.
Q: Are steel angles resistant to earthquakes?
Steel angles can provide some level of resistance to earthquakes. Steel is known for its high strength and ductility, making it a suitable material for seismic-resistant construction. Steel angles, also known as steel L-shaped beams, are often used in structural applications to provide support and reinforcement. During an earthquake, steel angles can help distribute the seismic forces evenly throughout the structure, thereby reducing concentrated stress points. The L-shape design of steel angles enables them to resist bending and twisting forces, which are common during seismic events. Additionally, steel angles can be interconnected and welded together to form a rigid frame system, enhancing their seismic resistance. This system can absorb and dissipate energy from earthquake-induced vibrations, minimizing damage to the structure. However, it is important to note that the overall seismic resistance of a structure depends on various factors, such as the design, construction methods, and adherence to building codes and regulations. Steel angles alone cannot guarantee complete protection against earthquakes, but when properly integrated into a well-designed seismic-resistant system, they can significantly enhance the structure's ability to withstand seismic forces.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords