• Commercial Solar Inverter - sun70/75/80/90/100/110k-g03 | 70-110kw | Three Phase | 6 MPPT System 1
  • Commercial Solar Inverter - sun70/75/80/90/100/110k-g03 | 70-110kw | Three Phase | 6 MPPT System 2
  • Commercial Solar Inverter - sun70/75/80/90/100/110k-g03 | 70-110kw | Three Phase | 6 MPPT System 3
  • Commercial Solar Inverter - sun70/75/80/90/100/110k-g03 | 70-110kw | Three Phase | 6 MPPT System 4
Commercial Solar Inverter - sun70/75/80/90/100/110k-g03 | 70-110kw | Three Phase | 6 MPPT

Commercial Solar Inverter - sun70/75/80/90/100/110k-g03 | 70-110kw | Three Phase | 6 MPPT

Ref Price:
get latest price
Loading Port:
Ningbo
Payment Terms:
TT OR LC
Min Order Qty:
100 pc
Supply Capability:
5000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Output Power:
70k-110k
Inveter Efficiency:
98.3%
Output Voltage(V):
380
Input Voltage(V):
550
Output Current(A):
101.5-159.4
Output Frequency:
50/60Hz

The Deye 70-110K grid-connected inverter is suited for medium and large-scale commercial rooftops and ground-mounted solar PV system in which reliability and stability are important. the full series inverter has 30% DC input oversizing ratio and 10% AC output overloading ratio, offering a faster return on investment.

  • Max. 6      MPP trackers, Max. efficiency up to 98.7%

  • Zero      export application, VSG application

  • String      intelligent monitoring (optional)

  • Wide      output voltage range

  • Type II      DC/AC SPD

  • Anti-PID      function (Optional)

Model                                                                          SUN-70K-G03         SUN-75K-G03              SUN-80K-G03              SUN-90K-G03             SUN-100K-G03            SUN-110K-G03
Input Side
Max. DC Input Power (kW)9197.5104135150150
Max. DC Input Voltage (V)1000
Start-up DC Input Voltage (V)250
MPPT    Operating Range (V)200~850
Max. DC Input Current (A)40+40+40+4040+40+40+40+40+40
Max. Short Circuit Current (A)60+60+60+6060+60+60+60+60+60
Number of MPPT / Strings per MPPT4/46/4
Output Side
Rated Output Power (kW)70758090100110
Max. Active Power (kW)7782.58899110121
Nominal Output Voltage / Range (V)3L/N/PE 380V/0.85Un-1.1Un, 400V/0.85Un-1.1Un
Rated Grid Frequency (Hz)50 / 60 (Optional)
Operating PhaseThree phase
Rated AC Grid Output Current (A)101.5108.7115.9130.4144.9159.4
Max. AC Output Current (A)111.6119.6127.5143.5159.4175.4
Output Power Factor>0.99
Grid Current THD<3%
DC Injection Current (mA)<0.5%
Grid Frequency Range47~52 or 57~62 (Optional)
Efficiency
Max. Efficiency98.7%
Euro Efficiency98.3%
MPPT Efficiency>99%
Protection
DC Reverse-Polarity ProtectionYes
AC Short Circuit ProtectionYes
AC Output Overcurrent ProtectionYes
Output Overvoltage ProtectionYes
Insulation Resistance ProtectionYes
Ground Fault MonitoringYes
Anti-islanding ProtectionYes
Temperature ProtectionYes
Integrated DC SwitchYes
Remote software uploadYes
Remote change of operating parametersYes
Surge protectionDC Type II / AC Type II
General Data
Size (mm)838W×568H×323D
Weight (kg)73.7
TopologyTransformerless
Internal Consumption<1W (Night)
Running Temperature-25~65,   >45 derating
Ingress ProtectionIP65
Noise Emission (Typical)<55 dB
Cooling ConceptSmart cooling
Max. Operating Altitude Without Derating2000m
Warranty5 years
Grid Connection StandardCEI 0-21, VDE-AR-N 4105, NRS 097, IEC 62116, IEC 61727, G99,   G98, VDE 0126-1-1, RD 1699, C10-11
Operating Surroundings Humidity0-100%
Safety EMC / StandardIEC/EN 61000-6-1/2/3/4, IEC/EN 62109-1, IEC/EN 62109-2
Features
DC Connection
   
MC-4 mateable
   
AC ConnectionIP65 rated plug 
 DisplayLCD 240 × 160
   
InterfaceRS485/RS232/Wifi/LAN


Q: How does a solar inverter ensure safety during maintenance?
A solar inverter ensures safety during maintenance by automatically disconnecting the system from the grid and de-energizing the circuits. This prevents any potential electrical shocks or accidents while the maintenance personnel work on the system.
Q: Can a solar inverter be used in systems with multiple solar arrays?
Yes, a solar inverter can be used in systems with multiple solar arrays. In fact, it is common practice to connect multiple solar arrays to a single inverter, especially in larger solar installations. The inverter converts the DC power generated by the solar arrays into AC power that can be used by the electrical grid or consumed directly. By connecting multiple arrays to a single inverter, the overall system efficiency can be maximized, and it allows for easier monitoring and control of the entire solar power system.
Q: Can a solar inverter be used in a community solar project?
Yes, a solar inverter can be used in a community solar project. In fact, a solar inverter is an essential component of any solar power system, including community solar projects. It converts the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be used to power homes and businesses in the community. The solar inverter also helps regulate the flow of electricity and ensures the system operates efficiently.
Q: How does a solar inverter prevent islanding?
A solar inverter prevents islanding by constantly monitoring the grid connection and ensuring there is a stable and continuous power supply. If the grid connection is lost or becomes unstable, the inverter immediately shuts down to prevent the formation of an island, where it would continue to supply power to the disconnected grid. This feature ensures the safety of utility workers and prevents damage to equipment during grid maintenance or emergencies.
Q: Can a solar inverter be used in regions with high altitude conditions?
Yes, a solar inverter can be used in regions with high altitude conditions. However, it is important to consider certain factors such as temperature, air density, and potential voltage fluctuations that can affect the performance of the solar inverter at high altitudes. Specialized inverters or adjustments may be required to ensure optimal functioning in such conditions.
Q: Can a solar inverter be used in areas with high seismic activity?
Yes, a solar inverter can be used in areas with high seismic activity. However, it is essential to ensure that the solar inverter is designed to withstand seismic vibrations and has been installed using appropriate seismic-resistant mounting techniques. Special precautions and engineering considerations may be necessary to ensure the inverter's integrity and functionality during seismic events.
Q: What are the common fault indications in a solar inverter?
Some common fault indications in a solar inverter include error codes displayed on the inverter's screen, abnormal or fluctuating power output, frequent tripping or shutting down of the inverter, unusual noises or vibrations, and failure to connect or communicate with the monitoring system. These fault indications often suggest issues such as overheating, overvoltage, overcurrent, ground faults, or component failure within the inverter.
Q: Can a solar inverter be used in off-grid systems?
Yes, a solar inverter can be used in off-grid systems. In fact, it is an essential component of off-grid solar systems. The solar inverter is responsible for converting the DC power generated by the solar panels into AC power that can be used to run household appliances and charge batteries. This allows off-grid systems to store excess energy for use during periods of low sunlight, providing a reliable source of electricity even when disconnected from the grid.
Q: Can a solar inverter be used with a solar-powered water desalination system?
Yes, a solar inverter can be used with a solar-powered water desalination system. A solar inverter is responsible for converting the DC power generated by solar panels into AC power that can be used by electrical devices. In the case of a solar-powered water desalination system, the solar panels generate DC power, which is then converted into AC power by the inverter to run the system's pumps, filters, and other electrical components. This allows the system to operate efficiently using clean and renewable energy from the sun.
Q: How does a solar inverter handle voltage flicker?
A solar inverter handles voltage flicker by regulating and stabilizing the voltage output. It detects any fluctuations in the grid voltage caused by flicker and adjusts the output accordingly to maintain a consistent and stable voltage for the connected solar panels or other electrical devices.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords