• SUN-4/5/6/7/8/10/12K-G05-P| 4-12KW | Three Phase | 2 MPPT System 1
  • SUN-4/5/6/7/8/10/12K-G05-P| 4-12KW | Three Phase | 2 MPPT System 2
  • SUN-4/5/6/7/8/10/12K-G05-P| 4-12KW | Three Phase | 2 MPPT System 3
  • SUN-4/5/6/7/8/10/12K-G05-P| 4-12KW | Three Phase | 2 MPPT System 4
SUN-4/5/6/7/8/10/12K-G05-P| 4-12KW | Three Phase | 2 MPPT

SUN-4/5/6/7/8/10/12K-G05-P| 4-12KW | Three Phase | 2 MPPT

Ref Price:
get latest price
Loading Port:
Ningbo
Payment Terms:
TT OR LC
Min Order Qty:
100 pc
Supply Capability:
5000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Output Power:
4kw-12kw
Inveter Efficiency:
97.5%
Output Voltage(V):
380
Input Voltage(V):
550
Output Current(A):
5.8-17.4
Output Frequency:
50/60Hz

Model                                                                    SUN-4K-G05-P        SUN-6K-G05-P        SUN-7K-G05-P      SUN-7K-G05-P       SUN-8K-G05-P     SUN-10K-G05-P     SUN-12K-G05-P
Input Side
Max. DC Input Power (kW)5.26.57.89.110.41315.6
Max. DC Input Voltage (V)1000
Start-up DC Input Voltage (V)140250
MPPT    Operating Range (V)120~850200~850
Max. DC Input Current (A)20+20
Max. Short Circuit Current (A)30+30
No.of MPP Trackers2
No.of Strings per MPP Tracker1
Output Side
Rated Output Power (kW)456781012
Max. Active Power (kW)4.45.56.67.78.81113.2
Nominal Output Voltage / Range (V)3L/N/PE    380V/0.85Un-1.1Un, 400V/0.85Un-1.1Un
Rated Grid Frequency (Hz)50 / 60 (Optional)
Operating PhaseThree phase
Rated AC Grid Output Current (A)5.87.28.710.111.614.517.4
Max. AC Output Current (A)6.489.611.112.815.919.1
Output Power Factor0.8 leading to 0.8 lagging
Grid Current THD<3%
DC Injection Current (mA)<0.5%
Grid Frequency Range47~52 or 57~62 (Optional)
Efficiency
Max. Efficiency98.3%
Euro Efficiency97.5%
MPPT Efficiency>99%
Protection
DC Reverse-Polarity ProtectionYes
AC Short Circuit ProtectionYes
AC Output Overcurrent ProtectionYes
Output Overvoltage ProtectionYes
Insulation Resistance ProtectionYes
Ground Fault MonitoringYes
Anti-islanding ProtectionYes
Temperature ProtectionYes
Integrated DC SwitchYes
Remote software uploadYes
Remote change of operating parametersYes
Surge protectionDC Type II / AC Type II
General   Data
Size (mm)330W×457H×185D330×457×205
Weight (kg)1011
TopologyTransformerless
Internal Consumption<1W (Night)
Running Temperature-25~65,   >45 derating
Ingress ProtectionIP65
Noise Emission (Typical)<30 dB
Cooling ConceptNatural cooling
Max. Operating Altitude Without Derating2000m
Warranty5 years
Grid Connection StandardCEI 0-21, VDE-AR-N 4105, NRS 097, IEC 62116, IEC 61727, G99,   G98, VDE 0126-1-1, RD 1699, C10-11
Operating Surroundings Humidity0-100%
Safety EMC / StandardIEC/EN 61000-6-1/2/3/4, IEC/EN 62109-1, IEC/EN 62109-2
Features
DC Connection
   
MC-4   mateable
   
AC Connection IP65 rated plug 
Display
   
LCD1602
Interface RS485/RS232/Wifi/LAN

This series inverter is specially designed for three-phase PV systems, covering a wide power range of 4kW, 5kW, 6kW, 7kW, 8kW, 10kW, 12kW. With compactness design, it is easy to install and operate. It supports wide AC output voltage to ensure longer working hour.

·        2 MPP tracker, Max. efficiency up to 98.3%

·        Zero export application, VSG application

·        String intelligent monitoring (optional)

·        Wide output voltage range

·        Anti-PID function (Optional)


Q:Can a solar inverter be used in systems with different module voltages?
Yes, a solar inverter can be used in systems with different module voltages. Inverters are designed to convert the DC power generated by solar panels into AC power that can be used in homes or businesses. They typically have a wide range of input voltage tolerance, allowing them to accommodate different module voltages. However, it is important to ensure that the inverter is compatible with the specific voltage range of the solar panels to ensure optimal performance and safety.
Q:Can a solar inverter be used in systems with different module tilts?
Yes, a solar inverter can be used in systems with different module tilts. Solar inverters are designed to convert the DC power generated by solar panels into AC power for use in the electrical grid or in the building. The module tilt refers to the angle at which the solar panels are installed, which can vary depending on factors like geographical location and specific installation requirements. Solar inverters are typically designed to be adaptable and can accommodate a wide range of module tilts, allowing for flexibility and optimization of solar energy generation.
Q:What are the advantages of using a transformerless solar inverter?
One advantage of using a transformerless solar inverter is increased efficiency. Transformerless inverters have a higher efficiency rating compared to inverters with transformers, which means more of the solar energy is converted into usable electricity. Additionally, transformerless inverters are lighter and more compact, making them easier to install and transport. They also tend to have a longer lifespan and require less maintenance compared to inverters with transformers.
Q:Can a solar inverter be used with different types of backup power sources?
Yes, a solar inverter can be used with different types of backup power sources. Solar inverters are designed to convert the DC power generated by solar panels into AC power that can be used to power household appliances and devices. They can be connected to various backup power sources like batteries, generators, or the grid to provide uninterrupted power supply during periods of low sunlight or power outages.
Q:What is the difference between a grid-connected inverter and an off-grid inverter? What are the advantages of a hybrid inverter?
Hybrid inverter is not a clear concept, but now both energy storage dual-grid inverter does have the ability to receive control system,
Q:How does a solar inverter handle reactive power injection into the grid?
A solar inverter handles reactive power injection into the grid by using advanced control algorithms and capacitors. It actively monitors the grid's voltage and frequency and adjusts its output to maintain the required power factor. The inverter can either absorb or inject reactive power into the grid as needed to ensure a stable and balanced power flow.
Q:How does a solar inverter handle voltage and frequency variations caused by voltage sags and swells?
A solar inverter is equipped with various mechanisms to handle voltage and frequency variations caused by voltage sags and swells. When there is a voltage sag or swell in the electrical grid, the solar inverter employs a technique called Maximum Power Point Tracking (MPPT) to regulate the power output from the solar panels. During a voltage sag, when the grid voltage drops below the normal level, the solar inverter adjusts its MPPT algorithms to ensure that the solar panels continue to operate at their maximum power point. This enables the inverter to extract the maximum available power from the panels and compensate for the reduced grid voltage. By dynamically adjusting the operating point of the panels, the inverter mitigates the effects of the voltage sag and maintains optimal power output. Similarly, in the case of a voltage swell, when the grid voltage increases above the normal level, the solar inverter again utilizes its MPPT capabilities to regulate the power output. It adjusts the operating point of the panels to ensure that they do not exceed their rated voltage, thereby protecting them from potential damage. This allows the inverter to effectively handle the increased grid voltage and prevent any adverse effects on the solar panels. In addition to voltage regulation, a solar inverter also addresses frequency variations caused by voltage sags and swells. It is designed to synchronize with the grid frequency and maintain a stable output frequency. When the grid frequency deviates from the normal range, the inverter adjusts its internal control systems to match the grid frequency. This synchronization ensures that the power output from the inverter aligns with the grid requirements, allowing for seamless integration of solar energy into the electrical system. Overall, a solar inverter utilizes MPPT algorithms, voltage regulation mechanisms, and frequency synchronization capabilities to handle voltage and frequency variations caused by voltage sags and swells. These features enable the inverter to adapt to changing grid conditions, maximize power extraction from the solar panels, and maintain a stable and reliable power output.
Q:Can a solar inverter be used in commercial or industrial applications?
Yes, a solar inverter can be used in commercial or industrial applications. In fact, they are commonly utilized in these settings to convert the direct current (DC) generated by solar panels into alternating current (AC) that can power various electrical equipment and systems. Solar inverters enable efficient and reliable integration of solar energy into commercial and industrial operations, contributing to cost savings and environmental sustainability.
Q:Can a solar inverter be used in regions with extreme weather conditions?
Yes, solar inverters can be used in regions with extreme weather conditions. However, the durability and performance of the inverter may vary depending on the specific weather conditions. It is important to choose a solar inverter that is designed to withstand the extreme weather conditions of the region, such as high temperatures, strong winds, heavy rain, or snow. Additionally, proper installation, regular maintenance, and protection from harsh weather elements can help ensure the longevity and efficient operation of the solar inverter in extreme weather conditions.
Q:What are the key factors affecting the compatibility of a solar inverter with other system components?
The key factors affecting the compatibility of a solar inverter with other system components include the voltage and frequency requirements of the inverter, the capacity and type of the solar panels being used, the type and capacity of the battery storage system, and the overall electrical load of the system. Additionally, the communication protocols and interfaces supported by the inverter and other components play a crucial role in ensuring compatibility and seamless integration within the system.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords