• 3000W Solar Inverter - sun-4/5/6/7/8/10/12k-g05-p | 4-12kW | Three Phase | 2 MPPT System 1
  • 3000W Solar Inverter - sun-4/5/6/7/8/10/12k-g05-p | 4-12kW | Three Phase | 2 MPPT System 2
  • 3000W Solar Inverter - sun-4/5/6/7/8/10/12k-g05-p | 4-12kW | Three Phase | 2 MPPT System 3
  • 3000W Solar Inverter - sun-4/5/6/7/8/10/12k-g05-p | 4-12kW | Three Phase | 2 MPPT System 4
3000W Solar Inverter - sun-4/5/6/7/8/10/12k-g05-p | 4-12kW | Three Phase | 2 MPPT

3000W Solar Inverter - sun-4/5/6/7/8/10/12k-g05-p | 4-12kW | Three Phase | 2 MPPT

Ref Price:
get latest price
Loading Port:
Ningbo
Payment Terms:
TT OR LC
Min Order Qty:
100 pc
Supply Capability:
5000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Output Power:
4kw-12kw
Inveter Efficiency:
97.5%
Output Voltage(V):
380
Input Voltage(V):
550
Output Current(A):
5.8-17.4
Output Frequency:
50/60Hz
Model                                                                    SUN-4K-G05-P        SUN-6K-G05-P        SUN-7K-G05-P      SUN-7K-G05-P       SUN-8K-G05-P     SUN-10K-G05-P     SUN-12K-G05-P
Input Side
Max. DC Input Power (kW)5.26.57.89.110.41315.6
Max. DC Input Voltage (V)1000
Start-up DC Input Voltage (V)140250
MPPT    Operating Range (V)120~850200~850
Max. DC Input Current (A)20+20
Max. Short Circuit Current (A)30+30
No.of MPP Trackers2
No.of Strings per MPP Tracker1
Output Side
Rated Output Power (kW)456781012
Max. Active Power (kW)4.45.56.67.78.81113.2
Nominal Output Voltage / Range (V)3L/N/PE    380V/0.85Un-1.1Un, 400V/0.85Un-1.1Un
Rated Grid Frequency (Hz)50 / 60 (Optional)
Operating PhaseThree phase
Rated AC Grid Output Current (A)5.87.28.710.111.614.517.4
Max. AC Output Current (A)6.489.611.112.815.919.1
Output Power Factor0.8 leading to 0.8 lagging
Grid Current THD<3%
DC Injection Current (mA)<0.5%
Grid Frequency Range47~52 or 57~62 (Optional)
Efficiency
Max. Efficiency98.3%
Euro Efficiency97.5%
MPPT Efficiency>99%
Protection
DC Reverse-Polarity ProtectionYes
AC Short Circuit ProtectionYes
AC Output Overcurrent ProtectionYes
Output Overvoltage ProtectionYes
Insulation Resistance ProtectionYes
Ground Fault MonitoringYes
Anti-islanding ProtectionYes
Temperature ProtectionYes
Integrated DC SwitchYes
Remote software uploadYes
Remote change of operating parametersYes
Surge protectionDC Type II / AC Type II
General   Data
Size (mm)330W×457H×185D330×457×205
Weight (kg)1011
TopologyTransformerless
Internal Consumption<1W (Night)
Running Temperature-25~65,   >45 derating
Ingress ProtectionIP65
Noise Emission (Typical)<30 dB
Cooling ConceptNatural cooling
Max. Operating Altitude Without Derating2000m
Warranty5 years
Grid Connection StandardCEI 0-21, VDE-AR-N 4105, NRS 097, IEC 62116, IEC 61727, G99,   G98, VDE 0126-1-1, RD 1699, C10-11
Operating Surroundings Humidity0-100%
Safety EMC / StandardIEC/EN 61000-6-1/2/3/4, IEC/EN 62109-1, IEC/EN 62109-2
Features
DC Connection
   
MC-4   mateable
   
AC Connection IP65 rated plug 
Display
   
LCD1602
Interface RS485/RS232/Wifi/LAN

This series inverter is specially designed for three-phase PV systems, covering a wide power range of 4kW, 5kW, 6kW, 7kW, 8kW, 10kW, 12kW. With compactness design, it is easy to install and operate. It supports wide AC output voltage to ensure longer working hour.

·        2 MPP tracker, Max. efficiency up to 98.3%

·        Zero export application, VSG application

·        String intelligent monitoring (optional)

·        Wide output voltage range

·        Anti-PID function (Optional)


Q: Can a solar inverter be used with a solar-powered air conditioner?
Yes, a solar inverter can be used with a solar-powered air conditioner. A solar inverter is responsible for converting the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used to power appliances. In the case of a solar-powered air conditioner, the solar inverter would be essential for converting the DC electricity generated by the solar panels into AC electricity to run the air conditioner.
Q: How does a solar inverter handle varying solar irradiance levels?
A solar inverter handles varying solar irradiance levels by continuously monitoring the incoming solar energy and adjusting its operations accordingly. It converts the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power electrical devices. When the solar irradiance levels are high, the inverter optimizes the power output to match the maximum potential of the solar panels. Conversely, during low solar irradiance, the inverter adjusts its operations to ensure optimal efficiency and power generation. This adaptive nature of solar inverters allows them to efficiently harness solar energy under varying conditions.
Q: Can a solar inverter be installed in a multi-storey building?
Yes, a solar inverter can be installed in a multi-storey building. The installation of a solar inverter in a multi-storey building is possible and depends on various factors such as the availability of suitable roof space, electrical infrastructure, and compliance with local regulations. It is essential to consult with a professional solar installer to assess the feasibility and design a tailored solar energy system for the specific building.
Q: Can a solar inverter be used in areas with high levels of electrical noise or interference?
In areas with high levels of electrical noise or interference, a solar inverter can indeed be utilized. However, it is crucial to verify that the solar inverter is specifically designed and equipped to handle such conditions. Some contemporary solar inverters come with built-in features and technologies that aid in minimizing electrical noise and interference. These features encompass advanced filtering, shielding, and surge protection mechanisms. In addition, employing proper grounding and installation techniques can further diminish the impact of electrical noise and interference on the solar inverter's performance. To ensure compatibility and optimal performance in high-noise environments, it is recommended to seek advice from a professional or the manufacturer of the solar inverter.
Q: How does a solar inverter handle voltage fluctuations from the solar panels?
A solar inverter handles voltage fluctuations from the solar panels by employing a technique called Maximum Power Point Tracking (MPPT). The MPPT algorithm continuously monitors the voltage and current output of the solar panels and adjusts the operating point to ensure maximum power transfer. This allows the inverter to adapt to varying sunlight intensity and temperature conditions, efficiently converting the DC power generated by the panels into standard AC power. The inverter also incorporates voltage regulation and protection mechanisms to ensure stable and safe operation despite any voltage fluctuations.
Q: Can a solar inverter be used in a solar-powered air conditioning system?
Yes, a solar inverter can be used in a solar-powered air conditioning system. The solar inverter is responsible for converting the DC power generated by solar panels into usable AC power for appliances, including air conditioners. By utilizing a solar inverter, the solar-powered air conditioning system can effectively harness solar energy to cool spaces while minimizing reliance on traditional energy sources.
Q: What is the role of voltage regulation in a solar inverter?
The role of voltage regulation in a solar inverter is to ensure that the voltage output from the solar panels is converted and maintained at a stable and appropriate level for efficient and safe operation of electrical devices or for grid connection. This regulation helps to optimize the performance of the solar inverter and prevents voltage fluctuations that could potentially damage or disrupt the functioning of connected equipment.
Q: Can a solar inverter be used in regions with high temperature extremes?
Yes, solar inverters can be used in regions with high temperature extremes. However, it is important to consider the temperature range specified by the manufacturer for optimal performance and efficiency. Extreme heat may affect the inverter's efficiency and longevity, so proper cooling and ventilation should be ensured in such conditions.
Q: How does the quality of the AC waveform affect the performance of a solar inverter?
The quality of the AC waveform directly affects the performance of a solar inverter. A clean and stable waveform is essential for efficient and reliable operation of the inverter. Any deviations, distortions, or harmonics in the waveform can lead to increased power losses, reduced conversion efficiency, and potential damage to the inverter. Therefore, a high-quality AC waveform is crucial for optimal performance and maximum power output from a solar inverter.
Q: Can a solar inverter be used in areas with limited roof space or installation options?
Yes, a solar inverter can be used in areas with limited roof space or installation options. Solar inverters are typically compact and can be installed in various locations, such as the ground, walls, or even inside the house. In addition, there are different types of solar inverters available, including microinverters and power optimizers, which allow for more flexibility in system design and installation. These options can help maximize the use of available space and provide more installation options for areas with limited roof space.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords