• Large Solar Inverter - Sun-35/40/45/50k-g-lv | 35-50kW | Three Phase | 4 MPPT | Low Voltage 127/220VAC System 1
  • Large Solar Inverter - Sun-35/40/45/50k-g-lv | 35-50kW | Three Phase | 4 MPPT | Low Voltage 127/220VAC System 2
  • Large Solar Inverter - Sun-35/40/45/50k-g-lv | 35-50kW | Three Phase | 4 MPPT | Low Voltage 127/220VAC System 3
  • Large Solar Inverter - Sun-35/40/45/50k-g-lv | 35-50kW | Three Phase | 4 MPPT | Low Voltage 127/220VAC System 4
Large Solar Inverter - Sun-35/40/45/50k-g-lv | 35-50kW | Three Phase | 4 MPPT | Low Voltage 127/220VAC

Large Solar Inverter - Sun-35/40/45/50k-g-lv | 35-50kW | Three Phase | 4 MPPT | Low Voltage 127/220VAC

Ref Price:
get latest price
Loading Port:
Ningbo
Payment Terms:
TT OR LC
Min Order Qty:
100 pc
Supply Capability:
5000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Output Power:
35-50kw
Inveter Efficiency:
98.3%
Output Voltage(V):
220
Input Voltage(V):
550
Output Current(A):
91.9-131.2
Output Frequency:
50/60Hz
Technical Data
Model                                                                               SUN-35K-G02-LV                         
     SUN-40K-G-LV                              
  SUN-45K-G-LV                                SUN-50K-G-LV
Input Side
Max. DC Input Power (kW)45.55258.565
Max. DC Input Voltage (V)800
Start-up DC Input Voltage (V)250
MPPT  Operating Range (V)200~700
Max. DC Input Current (A)30+30+30+3040+40+40+40
Max. Short Circuit Current (A)45+45+45+4560+60+60+60
Number of MPPT / Strings per MPPT4/34/4
Output Side
Rated Output Power (kW)354034550
Max. Active Power (kW)38.54449.555
Nominal Output Voltage / Range (V)3L/N/PE 127/0.85Un-1.1Un,220 /0.85Un-1.1Un (this may vary with grid standards)
Rated Grid Frequency (Hz)60 / 50 (Optional)
Operating PhaseThree phase
Rated AC Grid Output Current (A)91.9104.9118.1131.2
Max. AC Output Current (A)101.1115.5129.9144.4
Output Power Factor0.8 leading to 0.8 lagging
Grid Current THD<3%
DC Injection Current (mA)<0.5%
Grid Frequency Range57~62
Efficiency
Max. Efficiency98.7%
Euro Efficiency98.3%
MPPT Efficiency>99%
Protection
DC Reverse-Polarity ProtectionYes
AC Short Circuit ProtectionYes
AC Output Overcurrent ProtectionYes
Output Overvoltage ProtectionYes
Insulation Resistance ProtectionYes
Ground Fault MonitoringYes
Anti-islanding ProtectionYes
Temperature ProtectionYes
Integrated DC SwitchYes
Remote software uploadYes
Remote change of operating parametersYes
Surge protectionDC Type II / AC Type II
General Data
Size (mm)700W×575H×297D
Weight (kg)60
TopologyTransformerless
Internal Consumption<1W (Night)
Running Temperature-25~65℃, >45℃ derating
Ingress ProtectionIP65
Noise Emission (Typical)<55 dB
Cooling ConceptSmart cooling
Max. Operating Altitude Without Derating2000m
Warranty5 years
Grid Connection StandardCEI 0-21, VDE-AR-N 4105, NRS 097, IEC 62116, IEC 61727, G99, G98, VDE 0126-1-1, RD 1699, C10-11
Operating Surroundings Humidity0-100%
Safety EMC / StandardIEC/EN 61000-6-1/2/3/4, IEC/EN 62109-1, IEC/EN 62109-2
Features
DC Connection
MC-4 mateable
     AC Connection IP65 rated plug
Display
 LCD 240 × 160
InterfaceRS485/RS232/Wifi/LAN

This series inverter is specially designed for 127/220Vac three-phase system, providing rated power at 35KW, 40KW, 45KW, 50KW. Equipped with large LCD and buttons, easy to operate and maintenance.   With compact design and high-power density, this series supports 1.3 DC/AC ratio, saving device investment.

  • 127/220Vac and      60Hz, three phase system

  • 4 MPP      tracker, Max. efficiency up to 98.7%

  • Zero      export application, VSG application

  • String      intelligent monitoring (optional)

  • Wide      output voltage range

  • Type II      DC/AC SPD

  • Anti-PID      function (Optional)


Q: How does a solar inverter handle grid voltage variations?
A solar inverter handles grid voltage variations by continuously monitoring the voltage levels of the grid. When the grid voltage increases or decreases beyond a certain range, the inverter adjusts its output voltage accordingly to maintain a stable and consistent supply of electricity. This ensures that the solar power system remains synchronized with the grid and prevents any damage to the inverter or the connected equipment.
Q: What is the role of power factor correction in a solar inverter?
The role of power factor correction in a solar inverter is to improve the efficiency and stability of the system by minimizing the reactive power and optimizing the power factor. This ensures that the inverter operates at its highest efficiency and reduces any voltage drops or disturbances in the grid. Additionally, power factor correction helps to comply with grid regulations and standards, preventing penalties and ensuring smooth integration of solar power into the electrical grid.
Q: What is maximum power point tracking (MPPT) in a solar inverter?
Maximum Power Point Tracking (MPPT) in a solar inverter is a technique used to optimize the energy output of a solar panel system by continuously tracking and adjusting the operating point of the panels to ensure they are operating at their maximum power point. This is achieved by dynamically adjusting the voltage and current levels to match the changing environmental conditions and load requirements, allowing the solar panels to produce the maximum amount of power available at any given time.
Q: How does a solar inverter handle frequency variations?
A solar inverter handles frequency variations by continuously monitoring the grid frequency and adjusting its own output frequency accordingly. It maintains a stable and synchronized frequency by using advanced control algorithms and power electronics to ensure that the electricity generated by the solar panels matches the frequency of the utility grid. This allows the inverter to seamlessly integrate renewable energy into the existing power system without causing disruptions or damage.
Q: Can a solar inverter be repaired or does it need to be replaced?
A solar inverter can often be repaired instead of being replaced, depending on the extent of the damage.
Q: How does a solar inverter prevent islanding?
A solar inverter prevents islanding by constantly monitoring the grid connection and ensuring there is a stable and continuous power supply. If the grid connection is lost or becomes unstable, the inverter immediately shuts down to prevent the formation of an island, where it would continue to supply power to the disconnected grid. This feature ensures the safety of utility workers and prevents damage to equipment during grid maintenance or emergencies.
Q: Can a solar inverter be used in parallel configurations for increased power output?
Yes, a solar inverter can be used in parallel configurations to increase power output. By connecting multiple inverters in parallel, the total power output can be increased, allowing for more efficient utilization of the solar energy generated. This parallel configuration allows for better distribution of the power load and helps to achieve a higher overall system capacity.
Q: What is the role of a voltage regulation feature in a solar inverter?
The role of a voltage regulation feature in a solar inverter is to ensure that the electricity generated by the solar panels is converted into a stable and consistent voltage suitable for use in homes or businesses. This feature helps to protect electrical appliances and equipment from voltage fluctuations and prevents any potential damage that could occur due to over or under voltage conditions.
Q: Can a solar inverter be used in remote areas without access to the grid?
Yes, a solar inverter can be used in remote areas without access to the grid. Solar inverters are designed to convert the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used to power electrical appliances. In remote areas, solar panels can be installed to harness sunlight and convert it into electricity, which can then be used through the solar inverter to provide power to homes, businesses, or any other electrical devices without the need for a grid connection.
Q: Can a solar inverter be used with different types of grounding materials?
Yes, a solar inverter can be used with different types of grounding materials. Solar inverters are designed to be compatible with various grounding systems, such as ground rods, ground plates, and grounding grids. The choice of grounding material may depend on local regulations, soil conditions, and the specific requirements of the solar installation. However, it is important to ensure that the chosen grounding material meets the safety standards and provides proper electrical grounding for the solar system.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords