• Su Kam Solar Inverter - Sun-6/8k-g03-lv | 6-8kW | Three Phase | 2 MPPT | Low Voltage | 127/220VAC System 1
  • Su Kam Solar Inverter - Sun-6/8k-g03-lv | 6-8kW | Three Phase | 2 MPPT | Low Voltage | 127/220VAC System 2
  • Su Kam Solar Inverter - Sun-6/8k-g03-lv | 6-8kW | Three Phase | 2 MPPT | Low Voltage | 127/220VAC System 3
  • Su Kam Solar Inverter - Sun-6/8k-g03-lv | 6-8kW | Three Phase | 2 MPPT | Low Voltage | 127/220VAC System 4
Su Kam Solar Inverter - Sun-6/8k-g03-lv | 6-8kW | Three Phase | 2 MPPT | Low Voltage | 127/220VAC

Su Kam Solar Inverter - Sun-6/8k-g03-lv | 6-8kW | Three Phase | 2 MPPT | Low Voltage | 127/220VAC

Ref Price:
get latest price
Loading Port:
Ningbo
Payment Terms:
TT OR LC
Min Order Qty:
100 pc
Supply Capability:
5000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Output Power:
6k-8kw
Inveter Efficiency:
97.5%
Output Voltage(V):
220
Input Voltage(V):
550
Output Current(A):
15.7-21
Output Frequency:
50/60Hz
Technical Data
Model                                                                                                         SUN-6K-G03-LV                                                                                           SUN-8K-G03-LV
Input Side
Max. DC Input Power (kW)7.810.4
Max. DC Input Voltage (V)800
Start-up DC Input Voltage (V)250
MPPT    Operating Range (V)200~700
Max. DC Input Current (A)13+1313+26
Max. Short Circuit Current (A)19.5+19.519.5+39
Number of MPPT / Strings per MPPT2/12/1+2
Output Side
Rated Output Power (kW)68
Max. Active Power (kW)6.68.8
Nominal Output Voltage / Range (V)3L/N/PE 127/0.85Un-1.1Un220 /0.85Un-1.1Un (this may vary with grid standards)
Rated Grid Frequency (Hz)60 / 50 (Optional)
Operating PhaseThree phase
Rated AC Grid Output Current (A)15.721
Max. AC Output Current (A)17.323.1
Output Power Factor0.8 leading to 0.8 lagging
Grid Current THD<3%< span="">
DC Injection Current (mA)<0.5%< span="">
Grid Frequency Range57~62
Efficiency
Max. Efficiency98.3%98.5%
Euro Efficiency97.5%
MPPT Efficiency>99%
Protection
DC Reverse-Polarity ProtectionYes
AC Short Circuit ProtectionYes
AC Output Overcurrent ProtectionYes
Output Overvoltage ProtectionYes
Insulation Resistance ProtectionYes
Ground Fault MonitoringYes
Anti-islanding ProtectionYes
Temperature ProtectionYes
Integrated DC SwitchYes
Remote software uploadYes
Remote change of operating parametersYes
Surge protectionDC Type II / AC Type II
General Data
Size (mm)330W×457H×205D333W×472H×202D
Weight (kg)1115
TopologyTransformerless
Internal Consumption<1W (Night)
Running Temperature-25~65,   >45 derating
Ingress ProtectionIP65
Noise Emission (Typical)<25 dB<40 dB
Cooling ConceptNatural coolingSmart cooling
Max. Operating Altitude Without Derating2000m
Warranty5 years
Grid Connection StandardCEI 0-21, VDE-AR-N 4105, NRS 097, IEC 62116, IEC 61727, G99,   G98, VDE 0126-1-1, RD 1699, C10-11
Operating Surroundings Humidity0-100%
Safety EMC / StandardIEC/EN 61000-6-1/2/3/4, IEC/EN 62109-1, IEC/EN 62109-2
Features
DC Connection
   
MC-4   mateable
   
AC Connection IP65 rated plug
Display
   
 LCD160
Interface2 RS485/RS232/Wifi/LAN

127/220Vac and 60Hz, three phase system

2 MPP tracker, Max. efficiency up to 98.5%

Zero export application, VSG application

String intelligent monitoring (optional)

Wide output voltage range

Anti-PID function (Optional)

This series inverter is specially designed for 127/220Vac three-phase system, especially suits for South American areas. With compactness design, easy to install and operate. It supports wide AC output voltage to ensure longer working hour, improving your economic benefits.


Q:How does a solar inverter handle variations in solar panel tilt and orientation?
A solar inverter handles variations in solar panel tilt and orientation by adjusting the power output to maximize the energy harvest. It continuously monitors the performance of the solar panels and adjusts the voltage and current levels to optimize the conversion of sunlight into usable electricity. This allows the inverter to accommodate changes in tilt and orientation, ensuring the system operates at its highest efficiency regardless of the panel position.
Q:Can a solar inverter be used in a solar-powered electric vehicle charging station?
Yes, a solar inverter can be used in a solar-powered electric vehicle charging station. A solar inverter is responsible for converting the Direct Current (DC) generated by solar panels into Alternating Current (AC) that can be used to charge electric vehicles. Therefore, it is an essential component in a solar-powered EV charging station, allowing the electricity generated from solar panels to be compatible with the charging needs of electric vehicles.
Q:Can a solar inverter be used in systems with different module types?
Yes, a solar inverter can be used in systems with different module types. Solar inverters are designed to convert the DC power generated by solar panels into usable AC power for homes or businesses. They typically have a wide input voltage range and are compatible with various module types, including monocrystalline, polycrystalline, and thin-film panels. However, it is essential to ensure that the inverter's specifications are compatible with the specific module types being used to optimize efficiency and performance.
Q:Can a solar inverter be used in harsh environmental conditions?
A solar inverter is capable of operating in harsh environmental conditions. It can withstand a wide range of environmental factors, including extreme temperatures, humidity, dust, and vibrations. Manufacturers often construct solar inverters using durable materials and apply protective coatings to shield them from severe weather conditions. Furthermore, many solar inverters are equipped with advanced cooling mechanisms to prevent overheating in hot climates. Nevertheless, it is crucial to consider that the durability and performance of a solar inverter in harsh conditions may differ depending on the brand and model. To guarantee optimal performance and longevity, it is advised to select a reliable and high-quality solar inverter specifically designed for use in harsh environmental conditions.
Q:Can a solar inverter be used in standalone systems?
Yes, a solar inverter can be used in standalone systems. Standalone systems, also known as off-grid systems, are not connected to the main power grid and rely on alternative energy sources such as solar power. In these systems, a solar inverter is essential as it converts the direct current (DC) generated by the solar panels into alternating current (AC) which can be used to power household appliances and other electrical loads.
Q:What are the potential risks of over-discharging a battery connected to a solar inverter?
The potential risks of over-discharging a battery connected to a solar inverter include reduced battery lifespan, decreased storage capacity, increased internal resistance, and potential damage to the battery cells. Over-discharging can lead to deep cycling, which can degrade the battery's performance and shorten its overall lifespan. It may also cause the battery to lose its ability to store energy efficiently, resulting in reduced storage capacity. Additionally, over-discharging can increase the internal resistance of the battery, leading to decreased efficiency and lower power output. In severe cases, over-discharging can cause irreversible damage to the battery cells, rendering them unusable and necessitating replacement.
Q:What are the potential risks of short-circuiting a solar inverter?
Short-circuiting a solar inverter can pose several potential risks. Firstly, it can cause damage to the solar inverter itself, leading to costly repairs or replacement. Secondly, it can disrupt the flow of electricity and potentially cause a fire hazard if not addressed promptly. Additionally, short-circuiting can result in power outages, causing inconvenience and potential financial losses. Lastly, it may void the warranty of the solar inverter, leaving the owner responsible for any damages or malfunctions.
Q:What is the role of a solar inverter in a net metering system?
The role of a solar inverter in a net metering system is to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity, which is compatible with the electrical grid. The inverter also synchronizes the solar system with the grid, ensuring that excess electricity generated by the solar panels is fed back into the grid, allowing for net metering and the possibility of earning credits for the surplus energy generated.
Q:Are there any government incentives for installing a solar inverter?
Yes, there are government incentives available for installing a solar inverter. Many countries and states offer various financial incentives, such as tax credits, rebates, grants, or low-interest loans to promote the adoption of renewable energy technologies like solar inverters. These incentives aim to encourage individuals, businesses, and organizations to invest in clean energy solutions and reduce their carbon footprint. It is advisable to check with local government authorities or renewable energy agencies to determine the specific incentives available in your area.
Q:How does a solar inverter communicate with other devices in a solar power system?
Various communication protocols and interfaces facilitate the interaction between a solar inverter and other devices in a solar power system. One commonly used method involves wired connections, where communication interfaces like RS485 or Ethernet establish a direct link between the inverter and devices like solar panels, batteries, and monitoring systems. In addition to wired connections, wireless communication methods are also employed. Technologies such as Wi-Fi, Zigbee, or Bluetooth allow the inverter to establish connections with nearby devices. This wireless communication primarily serves monitoring and control functions, granting users remote access to manage their solar power system. Effective communication between the solar inverter and other devices is pivotal for optimal performance and efficiency of the solar power system. Vital data, including voltage, current, and temperature, is transmitted from the solar panels to the inverter. This information is critical for achieving optimal power conversion, as the inverter adjusts its operations based on these readings to maximize power output and ensure system safety. Moreover, communication with devices like batteries enables the solar inverter to efficiently manage charging and discharging cycles, optimizing energy storage and utilization. This ensures that surplus energy generated by the solar panels is effectively stored in the batteries and utilized during periods of low sunlight. In conclusion, the communication capabilities of a solar inverter are essential for integrating and coordinating various components within a solar power system. They enable efficient power conversion, monitoring, and control, ultimately maximizing the performance and advantages of solar energy generation.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords