• Loom Solar Inverter Sun-5k-sg03lp1-eu 5kw Single Phase 2 MPPT Hybrid Inverter Low Voltage Battery System 1
  • Loom Solar Inverter Sun-5k-sg03lp1-eu 5kw Single Phase 2 MPPT Hybrid Inverter Low Voltage Battery System 2
  • Loom Solar Inverter Sun-5k-sg03lp1-eu 5kw Single Phase 2 MPPT Hybrid Inverter Low Voltage Battery System 3
  • Loom Solar Inverter Sun-5k-sg03lp1-eu 5kw Single Phase 2 MPPT Hybrid Inverter Low Voltage Battery System 4
  • Loom Solar Inverter Sun-5k-sg03lp1-eu 5kw Single Phase 2 MPPT Hybrid Inverter Low Voltage Battery System 5
Loom Solar Inverter Sun-5k-sg03lp1-eu 5kw Single Phase 2 MPPT Hybrid Inverter Low Voltage Battery

Loom Solar Inverter Sun-5k-sg03lp1-eu 5kw Single Phase 2 MPPT Hybrid Inverter Low Voltage Battery

Ref Price:
get latest price
Loading Port:
Ningbo
Payment Terms:
TT OR LC
Min Order Qty:
100 pc
Supply Capability:
5000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Output Power:
5000W
Inveter Efficiency:
97.00-97.60%
Output Voltage(V):
220
Input Voltage(V):
370
Output Current(A):
22.7
Output Frequency:
50/60Hz

SUN 5K-SGhybrid inverter, is suitable for residential and light commercial use, maximizing self-consumption rate of solar energy and increasing your energy impendence.   During the day, the PV system generates electricity which will be provided to the loads initially. Then, the excess energy will charge the battery via SUN 6K-SG. Finally, the stored energy can be released when the loads require it. The battery can also be charged by the diesel generator to ensure uninterrupted supply in the event of grid blackout.

100% unbalanced output, each phase; Max. output up to 50% rated power

DC couple and AC couple to retrofit existing solar system

Max. 16pcs parallel for on-grid and off-grid operation; Support multiple batteries parallel

Max. charging/discharging current of 240A

48V low voltage battery, transformer isolation design

6 time periods for battery charging/discharging


ModelSUN-5K
    -SG03LP1-EU
Battery Input Data
Battery TypeLead-acid   or Li-lon
Battery Voltage Range (V)40~60
Max. Charging Current (A)120
Max. Discharging Current (A)120
External Temperature SensorYes
Charging Curve3   Stages / Equalization
Charging Strategy for Li-Ion BatterySelf-adaption   to BMS
PV String Input Data
Max. DC Input Power (W)6500
Rated PV Input Voltage (V)370   (125~500)
Start-up Voltage (V)125
MPPT Voltage Range (V)150-425
Full Load DC Voltage Range (V)300-425
PV Input Current (A)13+13
Max. PV ISC (A)17+17
Number of MPPT / Strings per MPPT2/1+1
AC Output Data
Rated AC Output and UPS Power (W)5000
Max. AC Output Power (W)5500
AC Output Rated Current (A)22.7
Max. AC Current (A)25
Max. Continuous AC Passthrough (A)35
Peak Power (off grid)2   time of rated power, 10 S
Power Factor0.8   leading to 0.8 lagging
Output Frequency and Voltage50/60Hz;   L/N/PE  220/230Vac (single phase)
Grid TypeSingle   Phase
DC injection current (mA)THD<3%   (Linear load<1.5%)< td="">
Efficiency
Max. Efficiency97.60%
Euro Efficiency97.00%
MPPT Efficiency99.90%
Protection
IntegratedPV   Input Lightning Protection, Anti-islanding Protection, PV String Input   Reverse Polarity Protection, Insulation Resistor Detection, Residual Current   Monitoring Unit, Output Over Current Protection, Output Shorted Protection,   Surge protection
Output Over Voltage ProtectionDC   Type II/AC Type III
Certifications and Standards
Grid RegulationCEI   0-21, VDE-AR-N 4105, NRS 097, IEC 62116, IEC 61727, G99, G98,
    VDE 0126-1-1, RD 1699, C10-11
Safety EMC / StandardIEC/EN   61000-6-1/2/3/4, IEC/EN 62109-1, IEC/EN 62109-2
General Data
Operating Temperature Range (-45~60, >45 derating
 CoolingNatural   cooling
Noise (dB)<30   dB 
 Communication with   BMS RS485;   CAN 
Weight (kg)20.5
Size (mm)330W   x 580H x232D
    IP65
Protection DegreeIP65
Installation StyleWall-mounted
Warranty 5 years



Q: What is the purpose of a solar inverter in a solar power system?
The purpose of a solar inverter in a solar power system is to convert the direct current (DC) electricity produced by solar panels into alternating current (AC) electricity, which is the type of electricity used in most household appliances and the power grid.
Q: Can a solar inverter be used with different AC voltage systems?
No, a solar inverter cannot be used with different AC voltage systems. It is designed to convert the DC power generated by solar panels into a specific AC voltage that is compatible with the electrical grid. Using it with a different AC voltage system could lead to compatibility issues and may damage the inverter or the electrical system.
Q: What is the role of capacitors in a solar inverter?
The role of capacitors in a solar inverter is to store and release electrical energy in order to regulate and smooth out the flow of power. They help to stabilize the voltage levels, filter out any fluctuations or noise in the electrical signal, and provide a reserve of power for sudden increases in demand. Capacitors also improve the overall efficiency and performance of the solar inverter by reducing the strain on other components and preventing damage from power surges or spikes.
Q: Can a solar inverter be used with concentrated photovoltaic thermal systems?
Yes, a solar inverter can be used with concentrated photovoltaic thermal (CPVT) systems. A solar inverter is used to convert the direct current (DC) generated by the CPVT system into alternating current (AC) that can be used to power electrical devices or be fed into the grid.
Q: Can a solar inverter be used with a generator as a backup power source?
Yes, a solar inverter can be used with a generator as a backup power source. The solar inverter can be connected to the generator's output, allowing it to convert the generator's AC power into usable DC power for charging the batteries or powering the solar energy system. This setup ensures uninterrupted power supply during periods of low solar generation or in case of power outages.
Q: What are the potential risks of over-discharging a battery connected to a solar inverter?
The potential risks of over-discharging a battery connected to a solar inverter include reduced battery lifespan, decreased battery performance, and potential damage to the battery cells. Over-discharging can lead to deep cycling, causing the battery to degrade faster and lose its capacity to hold a charge effectively. This can result in shorter backup power duration during periods of low solar generation. Additionally, excessive discharge can cause irreversible damage to the battery cells, leading to reduced overall battery performance and potential safety hazards.
Q: How does a solar inverter handle voltage fluctuations in the grid?
A solar inverter handles voltage fluctuations in the grid by continuously monitoring the grid voltage. When the voltage exceeds or drops below the acceptable range, the inverter adjusts the power output of the solar panels accordingly. It stabilizes the voltage by regulating the flow of electricity from the solar panels, ensuring a consistent and safe supply of power to the grid.
Q: Can a solar inverter be used in locations with high humidity or extreme temperatures?
Yes, solar inverters can be used in locations with high humidity or extreme temperatures. However, it is important to choose an inverter specifically designed for such conditions. High-quality inverters are built to withstand these environmental factors and often have protection features to ensure reliable performance and longevity in harsh climates.
Q: What is the lifespan of a solar inverter?
The lifespan of a solar inverter typically ranges from 10 to 15 years, depending on various factors such as the quality of the inverter, proper maintenance, and operating conditions.
Q: How does a solar inverter handle partial shading on solar panels?
A solar inverter handles partial shading on solar panels by employing a technology called Maximum Power Point Tracking (MPPT). MPPT allows the inverter to continuously monitor the voltage and current of each individual solar panel, and adjust the operating point of the panels to maximize power output. When shading occurs on one or more panels, the inverter adjusts the voltage and current of the unshaded panels to compensate for the reduced power output, ensuring the overall system performance is optimized.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords