• 120V Solar Inverter - Sun-6k-sg03lp1-eu | 6kW | Single Phase | 2 MPPT | Hybrid Inverter | Low Voltage Battery System 1
  • 120V Solar Inverter - Sun-6k-sg03lp1-eu | 6kW | Single Phase | 2 MPPT | Hybrid Inverter | Low Voltage Battery System 2
  • 120V Solar Inverter - Sun-6k-sg03lp1-eu | 6kW | Single Phase | 2 MPPT | Hybrid Inverter | Low Voltage Battery System 3
  • 120V Solar Inverter - Sun-6k-sg03lp1-eu | 6kW | Single Phase | 2 MPPT | Hybrid Inverter | Low Voltage Battery System 4
  • 120V Solar Inverter - Sun-6k-sg03lp1-eu | 6kW | Single Phase | 2 MPPT | Hybrid Inverter | Low Voltage Battery System 5
120V Solar Inverter - Sun-6k-sg03lp1-eu | 6kW | Single Phase | 2 MPPT | Hybrid Inverter | Low Voltage Battery

120V Solar Inverter - Sun-6k-sg03lp1-eu | 6kW | Single Phase | 2 MPPT | Hybrid Inverter | Low Voltage Battery

Ref Price:
get latest price
Loading Port:
Ningbo
Payment Terms:
TT OR LC
Min Order Qty:
100 pc
Supply Capability:
5000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Output Power:
6000W
Inveter Efficiency:
97.00-97.60%
Output Voltage(V):
220
Input Voltage(V):
370
Output Current(A):
27.3
Output Frequency:
50/60Hz


SUN 6K-SGhybrid inverter, is suitable for residential and light commercial use, maximizing self-consumption rate of solar energy and increasing your energy impendence.   During the day, the PV system generates electricity which will be provided to the loads initially. Then, the excess energy will charge the battery via SUN 6K-SG. Finally, the stored energy can be released when the loads require it. The battery can also be charged by the diesel generator to ensure uninterrupted supply in the event of grid blackout.


100% unbalanced output, each phase; Max. output up to 50% rated power

DC couple and AC couple to retrofit existing solar system

Max. 16pcs parallel for on-grid and off-grid operation; Support multiple batteries parallel

Max. charging/discharging current of 240A

48V low voltage battery, transformer isolation design

6 time periods for battery charging/discharging


 

ModelSUN-6K
    -SG03LP1-EU
Battery Input DataBattery Input   Data
Battery TypeLead-acid   or Li-lon
Battery Voltage Range (V)40~60
Max. Charging Current (A)135
Max. Discharging Current (A)135
External Temperature SensorYes
Charging Curve3   Stages / Equalization
Charging Strategy for Li-Ion BatterySelf-adaption   to BMS
PV String Input DataPV String Input   Data
Max. DC Input Power (W)7800
Rated PV Input Voltage (V)370   (125~500)
Start-up Voltage (V)125
MPPT Voltage Range (V)150-425
Full Load DC Voltage Range (V)300-425
PV Input Current (A)13+13
Max. PV ISC (A)17+17
Number of MPPT / Strings per MPPT2/1+1
AC Output Data
Rated AC Output and UPS Power (W)6000
Max. AC Output Power (W)6600
AC Output Rated Current (A)27.3
Max. AC Current (A)30
Max. Continuous AC Passthrough (A)40
Peak Power (off grid)2   time of rated power, 10 S
Power Factor0.8   leading to 0.8 lagging
Output Frequency and Voltage50/60Hz;   L/N/PE  220/230Vac (single phase)
Grid TypeSingle   Phase
DC injection current (mA)THD<3%   (Linear load<1.5%)< td="">
EfficiencyEfficiency
Max. Efficiency97.60%
Euro Efficiency97.00%
MPPT Efficiency99.90%
Protection
IntegratedPV   Input Lightning Protection, Anti-islanding Protection, PV String Input   Reverse Polarity Protection, Insulation Resistor Detection, Residual Current   Monitoring Unit, Output Over Current Protection, Output Shorted Protection,   Surge protection
Output Over Voltage ProtectionDC   Type II/AC Type III
Certifications and Standards
Grid RegulationCEI   0-21, VDE-AR-N 4105, NRS 097, IEC 62116, IEC 61727, G99, G98,
    VDE 0126-1-1, RD 1699, C10-11
Safety EMC / StandardIEC/EN   61000-6-1/2/3/4, IEC/EN 62109-1, IEC/EN 62109-2
General   Data
Operating   Temperature Range (-45~60, >45 derating
 CoolingNatural   cooling
Noise (dB)<30   dB 
 Communication with   BMS RS485;   CAN 
Weight (kg)20.5
Size (mm)330W   x 580H x232D
    IP65
Protection DegreeIP65
Installation StyleWall-mounted
Warranty 5 years


 


Q: How do you connect a solar inverter to the electrical grid?
To connect a solar inverter to the electrical grid, you need to follow a few steps. Firstly, you need to ensure that your solar inverter is compatible with grid connection. Then, you'll need to install an AC disconnect switch and connect it to your main electrical panel. Next, connect the solar inverter output to the AC disconnect switch using appropriate wiring. Finally, hire a licensed electrician to inspect and connect the inverter to the utility meter or main electrical service panel, ensuring compliance with local regulations and safety standards.
Q: Are solar inverters compatible with battery storage systems?
Yes, solar inverters are compatible with battery storage systems. In fact, solar inverters play a crucial role in integrating battery storage with solar power systems. Solar inverters convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be used to power our homes and businesses. Battery storage systems, on the other hand, store excess solar energy for later use, allowing us to use solar power even when the sun is not shining. When combined with solar inverters, battery storage systems can be charged using the excess energy generated by the solar panels during the day, and then discharge that stored energy during the night or during periods of high energy demand. To facilitate compatibility, solar inverters used in battery storage systems are equipped with additional features and functionalities. For example, they may have built-in charge controllers that regulate the charging and discharging of the batteries, ensuring their optimal performance and longevity. Additionally, advanced inverters may also include smart grid capabilities, allowing them to communicate with the utility grid and optimize energy flows based on grid conditions and electricity prices. Overall, solar inverters are essential components in ensuring the seamless integration of battery storage systems with solar power, enabling us to maximize the benefits of clean and sustainable energy.
Q: Can a solar inverter be used with a solar-powered security camera system?
Yes, a solar inverter can be used with a solar-powered security camera system. A solar inverter is responsible for converting the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power electrical devices, including security cameras. By connecting the solar panels to a solar inverter, the generated solar energy can be efficiently utilized to power the security camera system.
Q: How does a solar inverter protect against overvoltage or overcurrent?
A solar inverter protects against overvoltage or overcurrent by constantly monitoring the electrical output from the solar panels. It uses built-in protection mechanisms such as surge protectors, voltage regulation circuits, and current limiters to prevent the voltage or current from exceeding safe levels. If an overvoltage or overcurrent event occurs, the inverter will automatically shut down or reduce the output to protect the system and connected devices from potential damage or failure.
Q: How does a solar inverter impact the overall system reliability?
A solar inverter plays a crucial role in ensuring the overall system reliability of a solar power system. It converts the direct current (DC) generated by solar panels into alternating current (AC) that is suitable for use in homes or businesses. By efficiently converting the energy and maintaining optimal voltage and frequency levels, the inverter ensures that the system operates reliably and consistently. It also provides various protective functions, such as monitoring and controlling the system's performance, detecting faults or abnormalities, and shutting down the system in case of emergencies. Therefore, a well-functioning solar inverter significantly impacts the overall system reliability by maximizing energy production, preventing damage, and ensuring smooth operation.
Q: How is a solar inverter connected to the solar panels?
A solar inverter is connected to solar panels through a direct current (DC) input from the panels, which is then converted into alternating current (AC) output by the inverter.
Q: What is the role of a voltage regulator in a solar inverter?
The role of a voltage regulator in a solar inverter is to ensure that the voltage output from the solar panels is regulated and maintained at a consistent level, regardless of variations in sunlight intensity. This is important for the efficient and safe operation of the inverter, as it prevents overvoltage or undervoltage conditions that could damage the inverter or connected equipment.
Q: Can a solar inverter be used for commercial applications?
Yes, a solar inverter can be used for commercial applications. Solar inverters are commonly used in commercial settings to convert the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used to power various commercial appliances and equipment.
Q: How does a solar inverter affect the overall system efficiency at different temperatures?
A solar inverter plays a crucial role in the overall system efficiency of a solar power system, particularly in relation to temperature variations. At higher temperatures, solar panels tend to operate less efficiently, resulting in decreased energy production. However, a well-designed solar inverter can mitigate this issue by converting the direct current (DC) generated by the panels into alternating current (AC) in a more efficient manner. This helps in reducing power losses and optimizing energy conversion, thereby positively impacting the overall system efficiency even at different temperature levels.
Q: Can a solar inverter be used with different types of energy management systems?
Yes, a solar inverter can be used with different types of energy management systems. Solar inverters are designed to convert the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power various electrical devices. They are compatible with different energy management systems, including grid-tied systems, off-grid systems, and hybrid systems. The inverter's main function is to ensure the efficient and safe conversion of solar energy, regardless of the type of energy management system it is paired with.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords