• Solar Inverter EMI Sun-35/40/45/50k-g-lv | 35-50kW | Three Phase | 4 MPPT | Low Voltage | 127/220VAC System 1
  • Solar Inverter EMI Sun-35/40/45/50k-g-lv | 35-50kW | Three Phase | 4 MPPT | Low Voltage | 127/220VAC System 2
  • Solar Inverter EMI Sun-35/40/45/50k-g-lv | 35-50kW | Three Phase | 4 MPPT | Low Voltage | 127/220VAC System 3
  • Solar Inverter EMI Sun-35/40/45/50k-g-lv | 35-50kW | Three Phase | 4 MPPT | Low Voltage | 127/220VAC System 4
Solar Inverter EMI Sun-35/40/45/50k-g-lv | 35-50kW | Three Phase | 4 MPPT | Low Voltage | 127/220VAC

Solar Inverter EMI Sun-35/40/45/50k-g-lv | 35-50kW | Three Phase | 4 MPPT | Low Voltage | 127/220VAC

Ref Price:
get latest price
Loading Port:
Ningbo
Payment Terms:
TT OR LC
Min Order Qty:
100 pc
Supply Capability:
5000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Output Power:
35-50kw
Inveter Efficiency:
98.3%
Output Voltage(V):
220
Input Voltage(V):
550
Output Current(A):
91.9-131.2
Output Frequency:
50/60Hz

This series inverter is specially designed for 127/220Vac three-phase system, providing rated power at 35KW, 40KW, 45KW, 50KW. Equipped with large LCD and buttons, easy to operate and maintenance.   With compact design and high-power density, this series supports 1.3 DC/AC ratio, saving device investment.

  • 127/220Vac and      60Hz, three phase system

  • 4 MPP      tracker, Max. efficiency up to 98.7%

  • Zero      export application, VSG application

  • String      intelligent monitoring (optional)

  • Wide      output voltage range

  • Type II      DC/AC SPD

  • Anti-PID      function (Optional)

Technical Data
Model                                                                               SUN-35K-G02-LV                            
  SUN-40K-G-LV                                
SUN-45K-G-LV                                 SUN-50K-G-LV
Input Side
Max. DC Input Power (kW)45.55258.565
Max. DC Input Voltage (V)800
Start-up DC Input Voltage (V)250
MPPT    Operating Range (V)200~700
Max. DC Input Current (A)30+30+30+3040+40+40+40
Max. Short Circuit Current (A)45+45+45+4560+60+60+60
Number of MPPT / Strings per MPPT4/34/4
Output Side
Rated Output Power (kW)354034550
Max. Active Power (kW)38.54449.555
Nominal Output Voltage / Range (V)3L/N/PE 127/0.85Un-1.1Un220 /0.85Un-1.1Un (this may vary with grid standards)
Rated Grid Frequency (Hz)60 / 50 (Optional)
Operating PhaseThree phase
Rated AC Grid Output Current (A)91.9104.9118.1131.2
Max. AC Output Current (A)101.1115.5129.9144.4
Output Power Factor0.8 leading to 0.8 lagging
Grid Current THD<3%< span="">
DC Injection Current (mA)<0.5%< span="">
Grid Frequency Range57~62
Efficiency
Max. Efficiency98.7%
Euro Efficiency98.3%
MPPT Efficiency>99%
Protection
DC Reverse-Polarity ProtectionYes
AC Short Circuit ProtectionYes
AC Output Overcurrent ProtectionYes
Output Overvoltage ProtectionYes
Insulation Resistance ProtectionYes
Ground Fault MonitoringYes
Anti-islanding ProtectionYes
Temperature ProtectionYes
Integrated DC SwitchYes
Remote software uploadYes
Remote change of operating parametersYes
Surge protectionDC Type II / AC Type II
General Data
Size (mm)700W×575H×297D
Weight (kg)60
TopologyTransformerless
Internal Consumption<1W (Night)
Running Temperature-25~65,   >45 derating
Ingress ProtectionIP65
Noise Emission (Typical)<55 dB
Cooling ConceptSmart cooling
Max. Operating Altitude Without Derating2000m
Warranty5 years
Grid Connection StandardCEI 0-21, VDE-AR-N 4105, NRS 097, IEC 62116, IEC 61727, G99,   G98, VDE 0126-1-1, RD 1699, C10-11
Operating Surroundings Humidity0-100%
Safety EMC / StandardIEC/EN 61000-6-1/2/3/4, IEC/EN 62109-1, IEC/EN 62109-2
Features
DC Connection
    AC Connection Display
    Interface
MC-4 mateable
    IP65 rated plug LCD 240 × 160
    RS485/RS232/Wifi/LAN
AC   ConnectionIP65 rated plug
DisplayLCD 240 × 160
InterfaceRS485/RS232/Wifi/LAN


Q: How does a solar inverter handle anti-islanding protection?
A solar inverter handles anti-islanding protection by constantly monitoring the grid voltage. If the grid goes down or voltage drops below a certain threshold, the inverter automatically disconnects from the grid to prevent feeding power back into the grid during an outage. This ensures the safety of utility workers and prevents damage to the grid.
Q: How the output voltage of the PV inverter and the grid-connected voltage are determined
due to the higher penetration rate of the car to go out to work or travel can be connected with the inverter battery drive electrical and various tools work. The car inverter output through the cigarette lighter is 20W, 40W, 80W, 120W to 150W power specifications. And then a large number of power inverter power
Q: What is the maximum operating altitude for a solar inverter?
The maximum operating altitude for a solar inverter typically varies depending on the specific model and manufacturer. However, on average, most solar inverters can operate effectively at altitudes up to 4,000 meters (13,123 feet) above sea level. It is important to consult the manufacturer's specifications or user manual for the precise altitude limitations of a particular solar inverter.
Q: How does a solar inverter handle low light conditions or cloudy days?
A solar inverter handles low light conditions or cloudy days by continuously monitoring the incoming solar energy. When there is a decrease in sunlight, the inverter adjusts its voltage and current output to optimize the power conversion. This ensures that even under low light conditions, the inverter can still convert the available solar energy into usable electricity efficiently.
Q: What is the maximum DC input current for a solar inverter?
The maximum DC input current for a solar inverter can vary depending on the specific model and manufacturer. It typically ranges from 10 to 60 amps, but it is best to consult the product specifications or contact the manufacturer for the exact maximum DC input current of a particular solar inverter.
Q: What is the role of a solar inverter in preventing underperformance?
The role of a solar inverter in preventing underperformance is to convert the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power electrical devices. It ensures optimal performance by tracking the maximum power point of the solar panels, regulating voltage and current levels, and protecting against voltage fluctuations or grid disturbances. This helps to minimize energy losses, enhance system efficiency, and prevent underperformance by ensuring that the solar system operates at its maximum capacity.
Q: Can a solar inverter be used in conjunction with a generator?
Yes, a solar inverter can be used in conjunction with a generator. In fact, it is a common practice to combine these two systems to create a hybrid power solution. The solar inverter can convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity, which can be used to power household appliances. When the solar panels do not generate enough electricity, the generator can kick in and provide additional power to meet the demand. This combination allows for a more reliable and efficient power supply, especially in areas with intermittent sunlight or during power outages.
Q: What is the role of a solar inverter in preventing islanding?
The role of a solar inverter in preventing islanding is to constantly monitor the electrical grid and immediately disconnect from it if it detects a fault or disruption. By disconnecting from the grid, the solar inverter ensures that it does not continue to generate power and create a self-sustaining island of electricity, which could pose a safety risk for utility workers attempting to fix the fault.
Q: What are the key factors affecting the reliability of a solar inverter?
The key factors affecting the reliability of a solar inverter include the quality of components used, design and manufacturing processes, environmental conditions, maintenance practices, and the level of protection against electrical faults.
Q: What is the role of fault ride-through capability in a solar inverter?
The role of fault ride-through capability in a solar inverter is to ensure the uninterrupted operation of the inverter during grid faults or disturbances. It allows the inverter to remain connected to the grid and continue generating power, even in the presence of temporary voltage dips or interruptions. This capability is essential for grid stability and reliability, as it helps prevent power outages and disruptions in the event of faults in the grid.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords