• Solartec  4600 KLNE on grid inverter with WIFI System 1
  • Solartec  4600 KLNE on grid inverter with WIFI System 2
Solartec  4600 KLNE on grid inverter with WIFI

Solartec 4600 KLNE on grid inverter with WIFI

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
10000 set/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Solartec 1500,2000,2500,3000,3600,4000,4600,5000

  • 1MPPT, single phase

  • IP 65

  • New mold with Pure thick aluminum crust.

    Efficient
    ■  Efficiency of up to 97.6 %
    ■  Transformerless

    Safe
    ■  Integrated DC switch
    ■  Comprehensive protection functions

    Flexible
    ■  LCD backlight
    ■  For indoor and outdoor installation

    Simple
    ■ ‘Plug and play’connection for easy installation
    ■  Friendly interface, easy to install and maintain


Q: What is the role of a grid-tie inverter in a solar PV system?
The main purpose of a grid-tie inverter in a solar PV system is to convert the DC electricity produced by the solar panels into AC electricity that can be utilized to supply power to electrical devices in homes or businesses. In a solar PV system, the solar panels generate DC electricity when exposed to sunlight. However, most residential and commercial establishments require AC electricity, which is the standard form of electricity provided by utility companies. This is where the grid-tie inverter comes into play. The grid-tie inverter takes the DC electricity generated by the solar panels and transforms it into AC electricity that is compatible with the electrical grid. It ensures that the electricity produced by the solar panels is synchronized with the utility power and can be seamlessly integrated into the existing electrical system. One of the primary functions of a grid-tie inverter is to match the frequency, voltage, and phase of the AC electricity generated by the solar panels with that of the utility power. This synchronization is crucial to guarantee a smooth flow of electricity between the solar system and the grid, and to prevent any interruptions or harm to the electrical system. Furthermore, a grid-tie inverter also serves as a safety monitor for the electrical grid. It continuously checks for any voltage or frequency fluctuations in the grid and can automatically disconnect from the grid in case of a power outage or grid failure. This feature is important to ensure the safety of electrical workers who might be repairing the grid during an outage. Additionally, a grid-tie inverter enables net metering, which is a billing arrangement where surplus electricity generated by the solar system can be fed back into the grid. This means that if the solar system produces more electricity than is being consumed, the excess energy can be sent back to the grid and the homeowner or business owner can receive credits for the surplus energy produced. This can help offset energy costs and potentially result in financial savings. In conclusion, the grid-tie inverter plays a crucial role in a solar PV system by converting the DC electricity generated by the solar panels into AC electricity that can be used to power electrical devices, ensuring synchronization with the electrical grid, monitoring the grid for safety, and enabling net metering for potential financial benefits.
Q: What is the role of an isolation transformer in a solar inverter?
The role of an isolation transformer in a solar inverter is to provide electrical isolation between the solar panels and the grid. It helps protect the solar panels and the inverter from electrical disturbances, such as voltage spikes or surges, that may occur in the grid. Additionally, the isolation transformer helps mitigate ground fault currents and provides a safety barrier between the grid and the solar system.
Q: Are there any electromagnetic interference concerns associated with solar inverters?
Yes, there can be electromagnetic interference concerns associated with solar inverters. These concerns mainly arise from the high-frequency switching of power electronics within the inverters. However, modern solar inverters are designed to minimize electromagnetic interference through the use of appropriate filters and shielding techniques. Compliance with relevant electromagnetic compatibility (EMC) standards ensures that solar inverters do not interfere with other electronic devices and are safe to use in residential and commercial settings.
Q: How does a solar inverter convert DC power into AC power?
A solar inverter converts DC power into AC power through a two-step process. Firstly, it uses a semiconductor component called a power switch to chop the DC input voltage into small pulses. Then, it employs a filter to smooth out these pulses, transforming them into a continuous waveform, which is the desired AC output power. This conversion enables the solar inverter to supply electricity that is compatible with standard AC appliances and can be used in homes, businesses, and the electrical grid.
Q: Can a solar inverter be used with different grid voltages?
No, a solar inverter is designed to work with specific grid voltages and is not compatible with different grid voltages.
Q: Can a solar inverter be used with different types of solar tracking systems?
Yes, a solar inverter can be used with different types of solar tracking systems. Solar inverters are designed to convert the direct current (DC) output from solar panels into alternating current (AC) electricity for use in homes or businesses. The type of solar tracking system used, such as single-axis or dual-axis tracking, does not affect the compatibility of the inverter. As long as the solar panels are generating DC electricity, the inverter can be used regardless of the tracking system in place.
Q: Can a solar inverter be used with dual MPPT inputs?
Yes, a solar inverter can be used with dual MPPT inputs. Dual MPPT (Maximum Power Point Tracking) inputs allow the inverter to optimize the power output from two separate solar arrays or strings, maximizing energy production even if the panels have different orientations or shading conditions. This feature is particularly useful in situations where there are multiple arrays with varying characteristics.
Q: How do you connect a solar inverter to the electrical grid?
To connect a solar inverter to the electrical grid, you typically follow these steps: 1. Install the solar panels: First, mount the solar panels on the roof or another suitable location to capture sunlight and generate DC (direct current) electricity. 2. Connect the solar panels to the inverter: Use appropriate wiring and connectors to connect the DC output of the solar panels to the input terminals of the solar inverter. 3. Install a suitable breaker: Install a dedicated circuit breaker between the inverter and the electrical panel to protect against electrical faults and overloads. 4. Connect the inverter to the electrical panel: Use appropriate wiring and connectors to connect the AC (alternating current) output of the inverter to the electrical panel. 5. Obtain necessary permits and inspections: Check with your local authorities to ensure compliance with regulations and obtain any required permits. Arrange for inspections to ensure the installation meets safety standards. 6. Activate the inverter: Follow the manufacturer's instructions to activate and configure the inverter according to your system specifications. 7. Connect to the electrical grid: If permitted in your area, arrange for a licensed electrician or utility company to connect the inverter to the electrical grid. This step may involve installing a bi-directional meter and completing paperwork. Once connected, the solar inverter converts the DC electricity generated by the solar panels into AC electricity suitable for use in your home or to feed excess power back into the grid.
Q: How does a solar inverter prevent islanding?
A solar inverter prevents islanding by constantly monitoring the electrical grid's voltage and frequency. If it detects a disruption or deviation from the standard parameters, it immediately shuts down or disconnects from the grid to prevent energy from being fed back into the grid during a power outage. This ensures the safety of utility workers who might be working on the grid and prevents any damage to the electrical system.
Q: How does a solar inverter handle excess power production?
A solar inverter handles excess power production by converting the surplus electricity generated by the solar panels into AC power, which can then be either used in the household or fed back into the grid for others to use.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords