• 220 Volt Solar Inverter Sun-20/25/30k-G02-LV | 20-30kW | Three Phase | 4 MPPT | Low Voltage | 127/220VAC System 1
  • 220 Volt Solar Inverter Sun-20/25/30k-G02-LV | 20-30kW | Three Phase | 4 MPPT | Low Voltage | 127/220VAC System 2
  • 220 Volt Solar Inverter Sun-20/25/30k-G02-LV | 20-30kW | Three Phase | 4 MPPT | Low Voltage | 127/220VAC System 3
  • 220 Volt Solar Inverter Sun-20/25/30k-G02-LV | 20-30kW | Three Phase | 4 MPPT | Low Voltage | 127/220VAC System 4
220 Volt Solar Inverter Sun-20/25/30k-G02-LV | 20-30kW | Three Phase | 4 MPPT | Low Voltage | 127/220VAC

220 Volt Solar Inverter Sun-20/25/30k-G02-LV | 20-30kW | Three Phase | 4 MPPT | Low Voltage | 127/220VAC

Ref Price:
get latest price
Loading Port:
Ningbo
Payment Terms:
TT OR LC
Min Order Qty:
100 pc
Supply Capability:
5000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Output Power:
20-30kw
Inveter Efficiency:
98%
Output Voltage(V):
220
Input Voltage(V):
550
Output Current(A):
20-30
Output Frequency:
50/60Hz

This series inverter is specially designed for 127/220Vac three-phase system, especially suits for South American areas. Equipped with large LCD and buttons, easy to operate and maintenance. The startup voltage of 250V, much lower than 600V of other products, which makes the inverter start up earlier to generate more power with longer working time

  • 127/220Vac and      60Hz, three phase system

  • Max 4      MPP tracker, Max. efficiency up to 98.7%

  • Zero      export application, VSG application

  • String      intelligent monitoring (optional)

  • Wide      output voltage range

  • Type II      DC/AC SPD

  • Anti-PID      function (Optional)

Technical Data
Model                                                                                        SUN-20K-G02-LV                                               SUN-25K-G02-LV                                                  SUN-30K-G02-LV
Input Side
Max. DC Input Power (kW)2632.539
Max. DC Input Voltage (V)800
Start-up DC Input Voltage (V)250
MPPT    Operating Range (V)200~700
Max. DC Input Current (A)40+4040+40+4040+40+40+40
Max. Short Circuit Current (A)60+6060+60+6060+60+60+60
Number of MPPT / Strings per MPPT2/33/3                                                                 4/3
Output Side
Rated Output Power (kW)202530
Max. Active Power (kW)2227.533
Nominal Output Voltage / Range (V)3L/N/PE 127/0.85Un-1.1Un220 /0.85Un-1.1Un (this may vary with grid standards)
Rated Grid Frequency (Hz)60 / 50 (Optional)
Operating PhaseThree phase
Rated AC Grid Output Current (A)52.565.678.7
Max. AC Output Current (A)57.872.286.6
Output Power Factor0.8 leading to 0.8 lagging
Grid Current THD<3%
DC Injection Current (mA)<0.5%
Grid Frequency Range57~62
Efficiency
Max. Efficiency98.7%
Euro Efficiency98%
MPPT Efficiency>99%
Protection
DC Reverse-Polarity ProtectionYes
AC Short Circuit ProtectionYes
AC Output Overcurrent ProtectionYes
Output Overvoltage ProtectionYes
Insulation Resistance ProtectionYes
Ground Fault MonitoringYes
Anti-islanding ProtectionYes
Temperature ProtectionYes
Integrated DC SwitchYes
Remote software uploadYes
Remote change of operating parametersYes
Surge protectionDC Type II / AC Type II
General Data
Size (mm)362W×577H×215D647.5W×537H×303.5D
Weight (kg)25.544.5
TopologyTransformerless
Internal Consumption<1W (Night)
Running Temperature-25~65,   >45 derating
Ingress ProtectionIP65
Noise Emission (Typical)<45 dB
Cooling ConceptSmart cooling
Max. Operating Altitude Without Derating2000m
Warranty5 years
Grid Connection StandardCEI 0-21, VDE-AR-N 4105, NRS 097, IEC 62116, IEC 61727, G99,   G98, VDE 0126-1-1, RD 1699, C10-11
Operating Surroundings Humidity0-100%
Safety EMC / StandardIEC/EN 61000-6-1/2/3/4, IEC/EN 62109-1, IEC/EN 62109-2
Features
DC Connection
   
MC-4   mateable
   
AC Connection IP65 rated plug
Display
   
 LCD1602 
InterfaceRS485/RS232/Wifi/LAN


Q: Can a solar inverter be used with solar-powered water pumps?
Yes, a solar inverter can be used with solar-powered water pumps. A solar inverter converts the DC power generated by solar panels into AC power, which is suitable for running various electrical devices, including water pumps. This allows the solar panels to directly power the water pump, enabling it to operate efficiently using renewable energy from the sun.
Q: Can a solar inverter be used in systems with multiple solar arrays?
Yes, a solar inverter can be used in systems with multiple solar arrays. In fact, it is common practice to connect multiple solar arrays to a single inverter, especially in larger solar installations. The inverter converts the DC power generated by the solar arrays into AC power that can be used by the electrical grid or consumed directly. By connecting multiple arrays to a single inverter, the overall system efficiency can be maximized, and it allows for easier monitoring and control of the entire solar power system.
Q: How does a solar inverter handle voltage dips and swells?
A solar inverter handles voltage dips and swells by constantly monitoring the incoming voltage from the solar panels and adjusting its output accordingly. When there is a dip in the grid voltage, the inverter compensates by injecting additional power into the system, whereas during voltage swells, it reduces its power output to prevent damage. This dynamic response ensures that the inverter maintains a stable and consistent voltage output, protecting both the solar system and the connected appliances.
Q: What certifications should I look for when choosing a solar inverter?
When choosing a solar inverter, it is important to look for certifications such as IEC 62109 or UL 1741. These certifications ensure that the inverter meets necessary safety and performance standards. Additionally, certifications like ISO 9001 indicate that the manufacturer follows quality management systems.
Q: How is the output voltage and frequency of a solar inverter regulated?
The output voltage and frequency of a solar inverter are regulated through advanced control algorithms and feedback mechanisms. These control algorithms continuously monitor the input power generated by the solar panels and adjust the inverter's output voltage and frequency accordingly. The regulation process involves various components such as voltage regulators, frequency detectors, and digital signal processors that ensure the output voltage and frequency are in sync with the grid or the desired specifications. Additionally, some inverters may also have built-in mechanisms to protect against voltage and frequency fluctuations, ensuring a stable and reliable power supply to connected devices or the grid.
Q: How does a solar inverter synchronize with the grid?
A solar inverter synchronizes with the grid by constantly monitoring the grid's frequency and voltage. It adjusts its own output frequency and voltage to match the grid's, ensuring that the solar energy it produces is in sync with the electricity supplied by the grid. This synchronization process allows the solar inverter to safely and efficiently inject solar power into the grid, while also allowing for seamless transition between solar and grid power.
Q: Can a solar inverter be connected to a generator?
Yes, a solar inverter can be connected to a generator. This connection allows the solar inverter to work in conjunction with the generator, utilizing both the solar energy and the generator power to meet the electrical requirements of a system.
Q: Can a solar inverter be used with different types of energy storage systems?
Yes, a solar inverter can be used with different types of energy storage systems. Solar inverters are designed to convert the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power electrical devices. The AC output from the solar inverter can be connected to various energy storage systems, such as batteries, to store excess energy generated by the solar panels for later use. Therefore, solar inverters are compatible with different types of energy storage systems, allowing for efficient utilization of solar energy.
Q: How do you choose the right input voltage range for a solar inverter?
When choosing the right input voltage range for a solar inverter, it is essential to consider the specifications and requirements of the specific solar panels being used. The input voltage range should be compatible with the voltage output of the solar panels to ensure optimal performance and efficiency. Additionally, factors such as the system size, installation location, and local regulations should also be taken into account to determine the appropriate input voltage range for the solar inverter.
Q: Can a solar inverter be used with a hybrid solar system?
Yes, a solar inverter can be used with a hybrid solar system. A hybrid solar system combines solar power with other power sources, such as batteries or a backup generator. The solar inverter converts the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity, which can be used to power appliances and devices. Whether it is a grid-tied, off-grid, or hybrid solar system, a solar inverter is an essential component for converting and utilizing the solar energy effectively.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords