• 220 Volt Solar Inverter Sun-20/25/30k-G02-LV | 20-30kW | Three Phase | 4 MPPT | Low Voltage | 127/220VAC System 1
  • 220 Volt Solar Inverter Sun-20/25/30k-G02-LV | 20-30kW | Three Phase | 4 MPPT | Low Voltage | 127/220VAC System 2
  • 220 Volt Solar Inverter Sun-20/25/30k-G02-LV | 20-30kW | Three Phase | 4 MPPT | Low Voltage | 127/220VAC System 3
  • 220 Volt Solar Inverter Sun-20/25/30k-G02-LV | 20-30kW | Three Phase | 4 MPPT | Low Voltage | 127/220VAC System 4
220 Volt Solar Inverter Sun-20/25/30k-G02-LV | 20-30kW | Three Phase | 4 MPPT | Low Voltage | 127/220VAC

220 Volt Solar Inverter Sun-20/25/30k-G02-LV | 20-30kW | Three Phase | 4 MPPT | Low Voltage | 127/220VAC

Ref Price:
get latest price
Loading Port:
Ningbo
Payment Terms:
TT OR LC
Min Order Qty:
100 pc
Supply Capability:
5000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Output Power:
20-30kw
Inveter Efficiency:
98%
Output Voltage(V):
220
Input Voltage(V):
550
Output Current(A):
20-30
Output Frequency:
50/60Hz

This series inverter is specially designed for 127/220Vac three-phase system, especially suits for South American areas. Equipped with large LCD and buttons, easy to operate and maintenance. The startup voltage of 250V, much lower than 600V of other products, which makes the inverter start up earlier to generate more power with longer working time

  • 127/220Vac and      60Hz, three phase system

  • Max 4      MPP tracker, Max. efficiency up to 98.7%

  • Zero      export application, VSG application

  • String      intelligent monitoring (optional)

  • Wide      output voltage range

  • Type II      DC/AC SPD

  • Anti-PID      function (Optional)

Technical Data
Model                                                                                        SUN-20K-G02-LV                                               SUN-25K-G02-LV                                                  SUN-30K-G02-LV
Input Side
Max. DC Input Power (kW)2632.539
Max. DC Input Voltage (V)800
Start-up DC Input Voltage (V)250
MPPT    Operating Range (V)200~700
Max. DC Input Current (A)40+4040+40+4040+40+40+40
Max. Short Circuit Current (A)60+6060+60+6060+60+60+60
Number of MPPT / Strings per MPPT2/33/3                                                                 4/3
Output Side
Rated Output Power (kW)202530
Max. Active Power (kW)2227.533
Nominal Output Voltage / Range (V)3L/N/PE 127/0.85Un-1.1Un220 /0.85Un-1.1Un (this may vary with grid standards)
Rated Grid Frequency (Hz)60 / 50 (Optional)
Operating PhaseThree phase
Rated AC Grid Output Current (A)52.565.678.7
Max. AC Output Current (A)57.872.286.6
Output Power Factor0.8 leading to 0.8 lagging
Grid Current THD<3%
DC Injection Current (mA)<0.5%
Grid Frequency Range57~62
Efficiency
Max. Efficiency98.7%
Euro Efficiency98%
MPPT Efficiency>99%
Protection
DC Reverse-Polarity ProtectionYes
AC Short Circuit ProtectionYes
AC Output Overcurrent ProtectionYes
Output Overvoltage ProtectionYes
Insulation Resistance ProtectionYes
Ground Fault MonitoringYes
Anti-islanding ProtectionYes
Temperature ProtectionYes
Integrated DC SwitchYes
Remote software uploadYes
Remote change of operating parametersYes
Surge protectionDC Type II / AC Type II
General Data
Size (mm)362W×577H×215D647.5W×537H×303.5D
Weight (kg)25.544.5
TopologyTransformerless
Internal Consumption<1W (Night)
Running Temperature-25~65,   >45 derating
Ingress ProtectionIP65
Noise Emission (Typical)<45 dB
Cooling ConceptSmart cooling
Max. Operating Altitude Without Derating2000m
Warranty5 years
Grid Connection StandardCEI 0-21, VDE-AR-N 4105, NRS 097, IEC 62116, IEC 61727, G99,   G98, VDE 0126-1-1, RD 1699, C10-11
Operating Surroundings Humidity0-100%
Safety EMC / StandardIEC/EN 61000-6-1/2/3/4, IEC/EN 62109-1, IEC/EN 62109-2
Features
DC Connection
   
MC-4   mateable
   
AC Connection IP65 rated plug
Display
   
 LCD1602 
InterfaceRS485/RS232/Wifi/LAN


Q: Can a solar inverter be used with different types of grounding configurations?
Yes, a solar inverter can be used with different types of grounding configurations. Solar inverters are typically designed to be compatible with various grounding systems, including grounded, ungrounded, or floating configurations. However, it is important to consult the manufacturer's specifications and guidelines to ensure proper installation and operation in accordance with the specific grounding requirements.
Q: How efficient are solar inverters?
Solar inverters are highly efficient, with most modern models achieving efficiency levels above 95%. This means that they can convert a large majority of the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity for use in homes or businesses. The high efficiency of solar inverters helps maximize the overall energy output and financial benefits of solar power systems.
Q: What are the safety considerations when installing a solar inverter?
When installing a solar inverter, there are several important safety considerations to keep in mind. Firstly, it is crucial to ensure that the power supply to the inverter is completely disconnected before beginning the installation process. This helps to prevent any electrical shocks or accidents. Additionally, it is important to follow the manufacturer's instructions and guidelines precisely to ensure a safe installation. Another key safety consideration is to make sure that the inverter is properly grounded to prevent the risk of electrical faults or fires. Finally, it is advisable to work with a qualified and experienced electrician to ensure that the installation is done correctly and in compliance with local electrical codes and regulations.
Q: How does a solar inverter handle voltage drops in the electrical wiring?
A solar inverter handles voltage drops in the electrical wiring by continuously monitoring the voltage and adjusting its output accordingly. It boosts the voltage if it detects a drop, ensuring that the desired voltage levels are maintained for efficient power transmission and utilization.
Q: What is the role of transformerless design in a solar inverter?
The role of transformerless design in a solar inverter is to eliminate the use of a bulky and costly transformer, which helps reduce the overall size, weight, and cost of the inverter. Additionally, a transformerless design allows for higher efficiency and improved performance of the solar inverter.
Q: How does a solar inverter handle frequency variations?
A solar inverter handles frequency variations by continuously monitoring the grid frequency and adjusting its own output accordingly. It uses advanced control algorithms to maintain a stable output frequency, ensuring the smooth and synchronized integration of solar power into the grid.
Q: What is the role of a power limiter in a solar inverter?
The role of a power limiter in a solar inverter is to regulate and limit the amount of power that can be generated and fed back into the electrical grid. It ensures that the solar system does not exceed the permitted power limits set by the utility company or regulatory authorities, preventing any potential damage to the grid infrastructure. Additionally, a power limiter helps maintain a stable and reliable power supply by controlling the amount of solar energy that is being exported or utilized within a specific threshold.
Q: Can a solar inverter be used with a monitoring system?
Yes, a solar inverter can be used with a monitoring system. In fact, many solar inverters come with built-in monitoring capabilities or can be easily integrated with external monitoring systems. These monitoring systems allow users to track the performance of their solar panels, monitor energy production, and detect any potential issues or faults in real-time. This helps users optimize their solar energy generation and ensure the system is operating efficiently.
Q: Can a solar inverter be used with a smart home system?
Yes, a solar inverter can be used with a smart home system. Smart home systems are designed to integrate with various devices and technologies, including solar inverters. By connecting a solar inverter to a smart home system, users can monitor and control their solar energy production, track energy consumption, and optimize energy usage based on real-time data. This integration allows for increased energy efficiency and convenience in managing solar power within a smart home environment.
Q: Can a solar inverter be used with a solar-powered cooling system?
Yes, a solar inverter can be used with a solar-powered cooling system. The solar inverter converts the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power various electrical devices, including the cooling system. This allows for the efficient use of solar energy to run the cooling system, reducing reliance on grid electricity and promoting sustainability.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords