• Steel Rebar Strips For Building Construction System 1
  • Steel Rebar Strips For Building Construction System 2
Steel Rebar Strips For Building Construction

Steel Rebar Strips For Building Construction

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Usage and Applications

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger.

 

Diameter(mm)

Section area (mm²)

Mass(kg/m)

Weight of 12m bar(kg)

6

28.27

0.222

2.664

8

50.27

0.395

4.74

10

78.54

0.617

7.404

12

113.1

0.888

10.656

14

153.9

1.21

14.52

16

201.1

1.58

18.96

18

254.5

2.00

24

20

314.2

2.47

29.64

22

380.1

2.98

35.76

25

490.9

3.85

46.2

28

615.8

4.83

57.96

32

804.2

6.31

75.72

36

1018

7.99

98.88

40

1257

9.87

118.44

50

1964

15.42

185.04

 

Packaging & Delivery

Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.

Each bundle weight: 2-3MT, or as required

Payment term: TT or L/C

Delivery Detail: within 45 days after received advanced payment or LC.

Label: to be specified by customer, generally, each bundle has 1-2 labels

Trade terms: FOB, CFR, CIF

Cold Rolled Techniques

Yield Point: 545-565mpa

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger.

 

Q: Are steel rebars suitable for earthquake-resistant structures?
Yes, steel rebars are suitable for earthquake-resistant structures. Steel rebars provide excellent tensile strength and reinforcement to concrete structures, making them more resistant to the lateral forces and vibrations caused by earthquakes. They help to distribute and absorb the energy generated during seismic events, enhancing the overall structural integrity and reducing the risk of collapse. Steel rebars have been widely used in earthquake-prone areas and are considered a reliable choice for ensuring the safety and stability of buildings and infrastructure during earthquakes.
Q: What are the common myths and misconceptions about steel rebars?
Addressing the importance of dispelling myths and misconceptions surrounding steel rebars is necessary for a better comprehension of their properties and applications. One prevalent myth is the ease with which steel rebars rust. Although steel can rust, rebars are typically manufactured using corrosion-resistant materials, such as epoxy-coated or galvanized steel. These coatings form a protective layer that prevents rusting, resulting in rebars that are highly durable and long-lasting, even in harsh environments. Another misconception is that larger rebars always offer stronger reinforcement. While the size or diameter of a rebar does contribute to its strength, it is not the sole determining factor. The quality or grade of the steel used, as well as its proper positioning within the concrete structure, are equally significant. Engineers meticulously calculate the necessary strength and spacing of rebars based on the specific load and structural requirements. Some individuals hold the belief that steel rebars are exclusively utilized in extensive construction projects. However, rebars are commonly employed in various construction applications, ranging from residential buildings to bridges and highways. Their versatility and strength make them indispensable components in reinforcing concrete structures of all sizes. There is also a misconception that steel rebars heighten the risk of electrical conductivity. While steel is an electricity conductor, the presence of rebars within a concrete structure does not significantly increase the likelihood of electrical hazards. Concrete acts as an insulator, and rebars are typically encased within it, thereby reducing the chances of contact with electrical currents. Finally, there exists a myth that steel rebars are expensive and unaffordable for most construction projects. In reality, the cost of rebars varies depending on factors such as grade, size, and quantity required. There are numerous options available to accommodate different budgets and project needs. Furthermore, the longevity and durability of steel rebars make them a cost-effective choice in the long term. In conclusion, dispelling myths and misconceptions surrounding steel rebars is crucial. Understanding their corrosion resistance, the role of size and placement, their versatility, the risks associated with electrical conductivity, and their cost-effectiveness will enable informed decision-making when it comes to reinforcing concrete structures.
Q: How do steel rebars improve the durability of concrete structures?
Steel rebars improve the durability of concrete structures by providing added strength and reinforcement. They enhance the load-bearing capacity of the concrete, prevent cracking and deformation, and increase resistance to tension and bending forces. This reinforcement helps to minimize structural damage caused by factors like heavy loads, seismic activity, temperature fluctuations, and corrosion, ultimately increasing the lifespan and overall durability of the concrete structure.
Q: What factors affect the cost of steel rebars?
The factors that affect the cost of steel rebars include the price of raw materials such as iron ore and scrap metal, the cost of production and manufacturing processes, transportation and logistics expenses, market demand and supply dynamics, currency exchange rates, and any applicable tariffs or trade policies. Additionally, economic factors such as inflation, interest rates, and overall market conditions can also impact the cost of steel rebars.
Q: What are the different types of steel rebars used in high-rise buildings?
The different types of steel rebars commonly used in high-rise buildings include carbon steel rebars, epoxy-coated rebars, stainless steel rebars, and galvanized rebars. These rebars have varying properties and are chosen based on factors like strength, corrosion resistance, and durability to ensure structural integrity and safety in the building's construction.
Q: Can steel rebars be used in structures with high resistance to vibration?
Structures with high resistance to vibration can indeed make use of steel rebars. These rebars are frequently employed as reinforcements in concrete structures to enhance their durability and strength. The inclusion of steel rebars bolsters the structural integrity of buildings and infrastructure, rendering them more impervious to a range of forces, including vibrations. Steel rebars possess exceptional tensile strength and stiffness, enabling them to evenly distribute and absorb applied loads throughout the structure. This characteristic helps to minimize concentrated stress points that may trigger vibrations or structural failure. Moreover, steel rebars are effective in controlling crack widths and preventing crack propagation, which further fortifies the structure against vibrations. Furthermore, steel rebars can be tailored to meet specific requirements based on projected vibration levels. By utilizing rebars with suitable diameters, spacing, and anchorage details, structures can be engineered to withstand vibrations caused by various external factors, such as earthquakes, wind loads, or nearby machinery. It is of utmost importance to ensure proper design and detailing of steel rebars in structures with high resistance to vibration. The layout of reinforcements must be meticulously planned to account for anticipated forces and vibrations. Additionally, the rebars should be adequately anchored and connected to other structural components to maintain their efficacy in combatting vibrations. All in all, when designed and implemented correctly, steel rebars serve as a dependable and widely-used reinforcement material that significantly enhances the resistance of structures to vibrations.
Q: What are the different types of steel rebars used in parking structures?
The different types of steel rebars commonly used in parking structures include conventional carbon steel rebars, epoxy-coated rebars, stainless steel rebars, and galvanized rebars. These rebars are chosen based on their specific properties and resistance to corrosion, ensuring the structural integrity and longevity of the parking structure.
Q: How do steel rebars provide flexibility to concrete structures?
Steel rebars provide flexibility to concrete structures by acting as reinforcement. When concrete is poured around the rebars, they provide tensile strength to the structure, allowing it to withstand external forces and prevent cracking or collapsing. The rebars help distribute the load evenly throughout the concrete, making the structure more flexible and resistant to bending or breaking under pressure.
Q: Can steel rebars be used in pre-stressed concrete elements?
Yes, steel rebars can be used in pre-stressed concrete elements. Rebars are often used to provide additional reinforcement and strength to pre-stressed concrete structures, helping to counteract the tensile forces that may be induced during the pre-stressing process.
Q: What is the average lifespan of steel rebars in concrete structures?
The average lifespan of steel rebars in concrete structures can vary depending on various factors such as the quality of the steel, environmental conditions, and maintenance practices. However, under normal conditions, steel rebars in concrete structures are expected to have a lifespan of around 50 to 100 years.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords