• Deformed Steel Bar ASTM A615 GR40 GR60 with High Quality System 1
  • Deformed Steel Bar ASTM A615 GR40 GR60 with High Quality System 2
  • Deformed Steel Bar ASTM A615 GR40 GR60 with High Quality System 3
  • Deformed Steel Bar ASTM A615 GR40 GR60 with High Quality System 4
Deformed Steel Bar ASTM A615 GR40 GR60 with High Quality

Deformed Steel Bar ASTM A615 GR40 GR60 with High Quality

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering Deformed Steel Bar ASTM A615 GR40 GR60 with High Quality at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Deformed Steel Bar ASTM A615 GR40 GR60 with High Quality are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Steel I-Beams are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Specifications of Deformed Steel Bar ASTM A615 GR40 GR60 with High Quality:

Standard

GB

HRB335, HRB400, HRB500

UK

G460B, B500A, B500B,B500C

USA

GR40, GR60

Diameter

6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm,

22mm,25mm,28mm,32mm,36mm,40mm,50mm

Length

6M, 9M,12M or as required

Place of origin

Hebei, China mainland

Application

building,construction,road,bridge etc

Brand name

DRAGON

Theoretical weight and section area of each diameter as below for your information:

Diameter(mm)

Section area (mm²)

Mass(kg/m)

6

28.27

0.222

8

50.27

0.395

10

78.54

0.617

12

113.1

0.888

14

153.9

1.21

16

201.1

1.58

18

254.5

2.00

20

314.2

2.47

22

380.1

2.98

25

490.9

3.85

28

615.8

4.83

32

804.2

6.31

36

1018

7.99

40

1257

9.87

50

1964

15.42

 

Usage and Applications of Deformed Steel Bar ASTM A615 GR40 GR60 with High Quality:

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy  and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..

Packaging & Delivery of Deformed Steel Bar:

Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.

Each bundle weight: 2-3MT, or as required

Payment term: TT or L/C

Delivery Detail: within 45 days after received advanced payment or LC.

Label: to be specified by customer, generally, each bundle has 1-2 labels

Trade terms: FOB, CFR, CIF

Deformed Steel Bar in Coil

Produce Line of Deformed Steel Bar

 

Note:

1. Our products are produced according to national standard (GB), if not, supply according to national standards (GB) or agreement as customer required.

2. Other Grade and Standard Deformed Steel Bar we can supply:

  Grade: GR40/GR60, G460B/B500A/B500B/B500C,BST500S

  Standard: ASTM, BS, DIN

  The Minimum Order Quantity of these products is high, and need to be confirmed.

3. We can not only supply Deformed Steel Bar; if you need anything about building materials, please contact us for further information.

4. Please send us your detail specifications when inquire. We will reply to you as soon as possible. We sincerely hope we can establish a long stable business relationship

 

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q4: What makes stainless steel stainless?

A4: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

 

Q: What is the difference between steel rebars and FRP rebars?
Steel rebars and FRP rebars are two different materials used for reinforcement in construction projects. The main difference between steel rebars and FRP (Fiber Reinforced Polymer) rebars lies in their composition and mechanical properties. Steel rebars are made of carbon steel and are known for their high tensile strength and durability. They have been widely used in construction for many years and are a reliable choice for reinforcing concrete structures. On the other hand, FRP rebars are made of fibers, such as glass or carbon, embedded in a polymer matrix. This composite material offers several advantages over steel rebars. Firstly, FRP rebars are lighter in weight, making them easier to handle and transport. This can reduce labor and equipment costs during construction. Secondly, FRP rebars are non-corrosive, unlike steel rebars. Steel rebars are prone to corrosion when exposed to moisture and chemicals, which can weaken the structure over time. FRP rebars do not rust or corrode, making them ideal for environments with high humidity, saltwater, or chemical exposure. Another significant difference is that FRP rebars have a high resistance to electromagnetic fields. This makes them suitable for applications in sensitive areas, such as hospitals, power plants, or telecommunication facilities, where electromagnetic interference should be minimized. However, there are also some limitations to consider with FRP rebars. They have lower tensile strength compared to steel rebars, which means they may not be suitable for heavy-load-bearing structures. Additionally, FRP rebars have a higher initial cost compared to steel rebars, although this can be offset by their long-term durability and reduced maintenance requirements. In summary, the main differences between steel rebars and FRP rebars lie in their composition, mechanical properties, and performance in different environmental conditions. Steel rebars offer high tensile strength but are vulnerable to corrosion, while FRP rebars are lighter, non-corrosive, and have a high resistance to electromagnetic fields. The choice between the two depends on the specific project requirements, load-bearing needs, and environmental factors.
Q: Can steel rebars be used in structures with high resistance to vibration?
Structures with high resistance to vibration can indeed make use of steel rebars. These rebars are frequently employed as reinforcements in concrete structures to enhance their durability and strength. The inclusion of steel rebars bolsters the structural integrity of buildings and infrastructure, rendering them more impervious to a range of forces, including vibrations. Steel rebars possess exceptional tensile strength and stiffness, enabling them to evenly distribute and absorb applied loads throughout the structure. This characteristic helps to minimize concentrated stress points that may trigger vibrations or structural failure. Moreover, steel rebars are effective in controlling crack widths and preventing crack propagation, which further fortifies the structure against vibrations. Furthermore, steel rebars can be tailored to meet specific requirements based on projected vibration levels. By utilizing rebars with suitable diameters, spacing, and anchorage details, structures can be engineered to withstand vibrations caused by various external factors, such as earthquakes, wind loads, or nearby machinery. It is of utmost importance to ensure proper design and detailing of steel rebars in structures with high resistance to vibration. The layout of reinforcements must be meticulously planned to account for anticipated forces and vibrations. Additionally, the rebars should be adequately anchored and connected to other structural components to maintain their efficacy in combatting vibrations. All in all, when designed and implemented correctly, steel rebars serve as a dependable and widely-used reinforcement material that significantly enhances the resistance of structures to vibrations.
Q: What is the role of steel rebars in reinforced concrete beams?
The role of steel rebars in reinforced concrete beams is to provide tensile strength and reinforcement to the structure. While concrete is strong in compression, it is weak in tension. By adding steel rebars to the concrete, it enhances its resistance to bending and cracking under load. The rebars act as a skeleton or framework within the concrete, distributing and transferring the applied forces, such as gravity or external loads, more effectively. This combination of concrete and steel rebars creates a durable and reliable composite material that can handle greater loads and maintain structural integrity.
Q: Can steel rebars be used in the construction of industrial facilities?
Yes, steel rebars can definitely be used in the construction of industrial facilities. Steel rebars provide excellent strength and durability, making them ideal for reinforcing concrete structures in industrial settings where heavy loads and high stress conditions are common. Additionally, steel rebars are resistant to corrosion, which is crucial in industrial environments that may be exposed to moisture or chemicals. Overall, steel rebars are a popular and reliable choice for reinforcing industrial facilities.
Q: How do steel rebars contribute to the fire resistance of concrete?
Steel rebars contribute to the fire resistance of concrete by providing structural reinforcement. In the event of a fire, the rebars help to maintain the integrity and stability of the concrete structure, preventing it from collapsing or losing its load-bearing capacity. The steel rebars also act as a heat sink, absorbing and dissipating heat away from the concrete, thereby slowing down its temperature rise and reducing the risk of structural failure.
Q: What is the average weight of steel rebars per meter?
The weight of steel rebars per meter can differ based on the particular size and type of rebar utilized. Nevertheless, as a general rule, a commonly used rebar size like a #4 (with a diameter of 1/2 inch) generally weighs approximately 0.668 kilograms per meter. Conversely, a #8 rebar (with a diameter of 1 inch) can weigh roughly 2.67 kilograms per meter. To obtain the precise weight of steel rebars per meter for a specific size and type, it is crucial to consult the manufacturer or refer to a reliable source.
Q: How do steel rebars contribute to the energy efficiency of a building?
Steel rebars contribute to the energy efficiency of a building in several ways. Firstly, steel rebars are used to reinforce concrete structures, such as beams, columns, and walls. This reinforcement helps to increase the structural integrity of the building, allowing it to withstand various loads and forces. This, in turn, reduces the need for excessive materials in the construction process, leading to a more energy-efficient building. Additionally, steel rebars have excellent thermal conductivity properties. This means that they can efficiently transfer and distribute heat throughout the building, helping to regulate the internal temperature. By evenly distributing heat, steel rebars help to minimize temperature fluctuations, reducing the need for excessive heating or cooling systems, thus saving energy. Moreover, steel rebars have a long lifespan and require minimal maintenance. This durability ensures that the building remains structurally sound over time, reducing the need for frequent repairs or replacements. As a result, the energy consumed in maintenance and renovation activities is significantly reduced. Furthermore, the use of steel rebars allows for the construction of larger, open spaces with fewer supporting columns. This design flexibility facilitates the integration of natural light and ventilation, reducing the reliance on artificial lighting and air conditioning systems. By maximizing natural resources, steel rebars contribute to the energy efficiency of the building. In conclusion, steel rebars play a vital role in enhancing the energy efficiency of a building. Their ability to reinforce structures, efficient thermal conductivity, durability, and design flexibility all contribute to reducing the energy consumption associated with construction, maintenance, and operation of the building.
Q: What is the difference between mild steel rebars and high-strength steel rebars?
The main difference between mild steel rebars and high-strength steel rebars lies in their tensile strength. Mild steel rebars have a lower tensile strength compared to high-strength steel rebars. High-strength steel rebars are designed to withstand higher loads and stresses, making them suitable for construction projects that require greater structural integrity. Conversely, mild steel rebars are more commonly used in applications where lower strength requirements are sufficient.
Q: How are steel rebars protected from fire damage?
Steel rebars are typically protected from fire damage through the application of fire-resistant coatings or by encasing them within fire-resistant materials, such as concrete. This helps to prevent the steel rebar from reaching its critical temperature, which could compromise its structural integrity.
Q: How are steel rebars used in retaining walls?
Steel rebars are commonly used in retaining walls to provide additional strength and reinforcement. They are typically placed horizontally within the concrete structure to prevent cracking and improve the wall's structural integrity. The rebars help distribute the load and resist the pressure exerted by the retained soil, ensuring the stability and durability of the retaining wall.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords