• Special Steel AISI 5140 Mild Carbon Steel System 1
  • Special Steel AISI 5140 Mild Carbon Steel System 2
Special Steel AISI 5140 Mild Carbon Steel

Special Steel AISI 5140 Mild Carbon Steel

Ref Price:
$300.00 - 500.00 / m.t. get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel
Shape:
Steel Round Bar
Standard:
AISI,ASTM,JIS,GB,BS,DIN,API,EN
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round,Rectangular,Oval,LTZ
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Net Weight:
as required
Length:
as required
Thickness:
as required

The details of our Steel

1. Produce Standard: as the GB, AISI, ASTM, SAE, EN, BS, DIN, JIS Industry Standard

 

2. Produce processes: Smelt Iron -EAF smelt Billet  - ESR smelt Billet -Hot rolled or forged get the  steel round bar and  plate

 

3. Heat treatment:

Normalized / Annealed / Quenched+Tempered

 

4. Quality assurance:

All order we can received  Third party inspection, You can let SGS, BV,.. and others test company test and inspect our products before Goods shipping.


Product information

Chemical Composition(GB)%

C

Si

Mn

Cr

Ni

0.37-0.44

0.17-0.37

0.50-0.80

0.80-1.10

≤0.30

 

Heat Treatment

Item

Temperature ℃

Hardness

Normalizing

850-870

179-229HB

 

Characterstics: Which has the best comprehensive mechanical properties

 

Applications

1.Can be used for drawing die and plastic mould

2.Can be used for middle and small punch

 Main product

Plastic Mould Steel 

DIN 1.2311,1.2738,1.2083,1.2316 etc. 

AISI P20,P20+Ni,420 etc. 

JIS SUS420J2 

 Hot Work Steel 

DIN 1.2344,1.2343,1.2367,1.2365,1.2581,1.2713 etc. 

AISI H13,H11,H10,H21, etc. 

JIS SKD61,SKD6,SKD5,SKT4 etc. 

 Cold Work Steel 

DIN 1.2739, 1.2601, 1.2080, 1.2436, 1.2631, 1.263, 1.2510, 1.2327 etc. 

AISI D2, D5, D3, D6, A8, A2, O1 etc. 

JIS SKD10, SKD11, SKD1, SKS3 etc. 

 High Speed Steel 

DIN 1.3343, 1.3243, 1.3247, 1.3355 etc. 

AISI M2, M35, M42, T1 etc.

JIS SKH51, SKH35, SKH59, SKH2 etc. 

 Alloy Structural Steel 

DIN 1.7035,1.6511,1.7220,1.7225 etc. 

AISI 5140, 4340, 4135, 4140 etc. 

JIS SCr440,SNCM439,SCM435,SCM440 etc. 

 Stainless & Carbon Steel or Others 

DIN 1.4125,1.1191 etc 

AISI 440C,1045, 1020 etc. 

JIS SUS440C,S45C etc

Product show

.jpg

Workshop show

Special Steel AISI 5140 Mild Carbon Steel

Q: How is special steel used in the production of bearings?
Special steel is used in the production of bearings due to its high strength, durability, and resistance to wear and corrosion. The use of special steel ensures that bearings can withstand heavy loads, high speeds, and harsh operating conditions, providing smooth and reliable performance. The steel used in bearings is carefully engineered to have specific properties, such as hardness and toughness, which are essential for their effective functioning.
Q: How does special steel perform in terms of electrical resistivity?
Special steel typically has higher electrical resistivity compared to other types of steel. This means that it offers greater resistance to the flow of electric current, making it less conductive.
Q: What are the requirements for special steel used in mining equipment manufacturing?
The requirements for special steel used in mining equipment manufacturing typically include high strength and toughness to withstand the harsh operating conditions, excellent wear resistance to endure abrasive materials, good corrosion resistance to resist chemical exposure, and high fatigue strength to withstand repeated loading. Additionally, the steel should have good weldability and machinability to facilitate fabrication processes.
Q: How does special steel perform in high-pressure and high-temperature environments?
Special steel is specifically designed to perform exceptionally well in high-pressure and high-temperature environments. It possesses unique properties that enable it to withstand extreme conditions without undergoing deformation, corrosion, or failure. One of the primary characteristics of special steel is its high strength. It is engineered to have superior mechanical properties, such as excellent tensile strength, which allows it to resist the immense pressure exerted on it in high-pressure environments. This strength ensures that the steel can maintain its structural integrity and not buckle or collapse under the immense force. Furthermore, special steel is highly resistant to corrosion and oxidation, even at high temperatures. This resistance is crucial in high-temperature environments where the presence of hot gases, steam, or caustic chemicals can cause regular steel to degrade rapidly. Special steel's resistance to corrosion and oxidation ensures its longevity and reliability, making it an ideal choice for applications in such challenging conditions. Additionally, special steel exhibits excellent heat resistance. It can withstand extreme temperatures without losing its mechanical properties, such as strength and hardness. This characteristic is crucial in high-temperature environments where regular steel would weaken, soften, or even melt. Special steel's ability to maintain its structural stability even in extreme heat ensures the safety and reliability of equipment and structures operating in such conditions. Moreover, special steel is known for its excellent thermal conductivity. This property allows it to efficiently transfer heat away from the high-temperature environment, preventing localized hotspots and thermal stress. By effectively dissipating heat, special steel ensures the overall stability and performance of equipment and structures under high-pressure and high-temperature conditions. In summary, special steel performs exceptionally well in high-pressure and high-temperature environments due to its high strength, resistance to corrosion and oxidation, heat resistance, and excellent thermal conductivity. These properties make special steel a reliable and durable material for various applications, including power generation, oil and gas exploration, aerospace engineering, and many more.
Q: What are the properties of corrosion-resistant steel?
Corrosion-resistant steel, also known as stainless steel, possesses several key properties. Firstly, it has a high resistance to corrosion, making it suitable for use in environments with exposure to moisture or corrosive substances. Secondly, it contains a minimum of 10.5% chromium, which forms a protective layer called chromium oxide on the surface, preventing further corrosion. Additionally, it has a strong resistance to staining, which makes it easy to clean and maintain. Moreover, corrosion-resistant steel exhibits excellent strength and durability, making it suitable for a wide range of applications in various industries.
Q: How is wear-resistant tool steel used in the production of cutting tools?
Wear-resistant tool steel is used in the production of cutting tools because of its high hardness, toughness, and resistance to wear. This type of steel can withstand the high pressures and temperatures generated during cutting processes, ensuring that the cutting tools maintain their sharpness and durability for extended periods. The wear-resistant tool steel is typically used to make the cutting edges or inserts of tools such as drills, milling cutters, saw blades, and lathe tools. It helps in improving the tool's performance, reducing tool wear, and increasing productivity in various manufacturing industries.
Q: How is tool and die steel used in the manufacturing of molds and dies?
Tool and die steel is an essential material used in the manufacturing of molds and dies due to its high strength, toughness, and wear resistance properties. It is used to create precise and durable molds and dies that are capable of withstanding the high pressures and temperatures involved in the manufacturing process. This steel is carefully designed and machined to produce intricate shapes and forms required for various industries such as automotive, aerospace, and electronics. Tool and die steel ensures the longevity and accuracy of molds and dies, leading to efficient and high-quality production in manufacturing processes.
Q: What are the different methods for surface hardening special steel?
There are several methods available for surface hardening special steel, each with its specific advantages and applications. Some of the commonly used methods are: 1. Carburizing: This process involves heating the steel in a carbon-rich environment, typically using a gas or liquid medium. The carbon atoms diffuse into the steel's surface, forming a high-carbon layer, which results in increased hardness. Carburizing is suitable for complex-shaped parts and provides good wear resistance. 2. Nitriding: Nitriding is a process where the steel is exposed to nitrogen-rich atmospheres at elevated temperatures. The nitrogen atoms diffuse into the steel's surface, forming nitrides, which significantly enhance the surface hardness and wear resistance. Nitriding is often used for parts requiring high fatigue strength and resistance to galling and fretting. 3. Induction hardening: Induction hardening utilizes high-frequency alternating currents to heat the steel's surface rapidly. This localized heating is followed by quenching, creating a hardened layer. Induction hardening is ideal for parts with localized wear areas or where only specific regions need to be hardened. 4. Flame hardening: Flame hardening involves heating the steel's surface to a high temperature using an oxy-fuel flame and then rapidly quenching it. This method is suitable for large and heavy parts that require deep hardening. Flame hardening provides good wear resistance and toughness. 5. Laser hardening: Laser hardening is a precise and localized surface hardening technique. A laser beam is used to heat the steel's surface, and quenching is performed afterward. This method offers high flexibility and control, making it suitable for complex geometries and small areas that require hardness improvement. 6. Carbonitriding: Carbonitriding is a combination of carburizing and nitriding processes. The steel is exposed to an atmosphere containing both carbon and nitrogen, resulting in the formation of a compound layer with improved hardness and wear resistance. Carbonitriding is commonly used for parts requiring a balance of hardness, toughness, and wear resistance. It is important to note that the selection of the appropriate surface hardening method depends on factors such as the specific steel composition, desired hardness depth, part geometry, intended application, and cost considerations.
Q: Can special steel be used in the production of kitchen utensils?
Kitchen utensils can benefit from the use of special steel. This term refers to steel alloys with specific properties, including resistance to corrosion, high strength, and durability. These qualities make special steel suitable for various applications, including the production of kitchen utensils. To meet the demands of regular use, exposure to water, and high temperatures, kitchen utensils require a robust material. Special steel, such as stainless steel, is commonly used for this purpose due to its resistance to corrosion and ability to withstand heat. Stainless steel utensils are widely recognized for their durability, rust resistance, and ease of cleaning. Apart from stainless steel, there are other types of special steel suitable for kitchen utensils. For instance, high carbon steel is often employed in the production of chef knives due to its sharpness and strength retention. Additionally, titanium-coated steel utensils are available, offering benefits like non-stick properties and enhanced durability. In conclusion, special steel provides versatility in the production of various kitchen utensils. Its outstanding properties make it an ideal choice for manufacturers aiming to deliver durable and high-quality products capable of enduring the demands of everyday kitchen use.
Q: How is low alloy steel used in the manufacturing of pressure vessels?
Low alloy steel is commonly used in the manufacturing of pressure vessels due to its excellent mechanical properties, including high strength, toughness, and corrosion resistance. These properties make low alloy steel ideal for withstanding high pressure and temperature conditions inside pressure vessels. Additionally, its weldability and formability allow for easier fabrication and assembly of pressure vessel components.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords