• Special Steel 5135 Alloy Steel Round Bars System 1
  • Special Steel 5135 Alloy Steel Round Bars System 2
  • Special Steel 5135 Alloy Steel Round Bars System 3
  • Special Steel 5135 Alloy Steel Round Bars System 4
  • Special Steel 5135 Alloy Steel Round Bars System 5
Special Steel 5135 Alloy Steel Round Bars

Special Steel 5135 Alloy Steel Round Bars

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
30 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel,Spring Steel,Bearing Steel,Gear Steel,Deformed Steel,Stainless Steel,Alloy Steel
Shape:
Steel Coil,Steel Sheet,Steel Wire Rod,Steel Flat Bar,Steel Square Bar,Steel Angle,Steel Round Bar,Steel Billets
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Certification:
UL,ISO,SGS,BV,IBR,RoHS,CE,API,BSI

Product information:

Standard

ASTM AISI

Grade

5135

MOQ

1 Metric Ton

Diameter

8mm~1500mm

Length

6m,12m or as required.

Diameter Tolerance

Within the allowable range or as required .

Condition of delivery

Hot rolled,Cold Rolled or as required.

Chemical Composition(%)

C

Si

Mn

P

S

Cr

0.30-0.37

  ≤0.40

0.60-0.90

 

≤0.035

≤0.035

0.90-1.20

Ni

Cu





≤0.30

≤0.030





Mechanical Properties(In Quenching and Tempering)

Tensile strength

Yield strength

Elongation

Reduction in Area

Impact

Hardness

(σb/MPa)

(σs/MPa)

(δ5/%)

(ψ/%)

(J)

(HB)

≥930

≥735

≥9

≥45

≥47

 

≤207

Product Show:

Special Steel 5135 Alloy Steel Round Bars


Workshop Show:

Special Steel 5135 Alloy Steel Round Bars

Shipping 

1. FedEx/DHL/UPS/TNT for samples, Door-to-Door;

2. By Air or by Sea for batch goods, for FCL; Airport/ Port receiving;

3. Customers specifying freight forwarders or negotiable shipping methods!

Delivery Time: 3-7 days for samples; 5-25 days for batch goods.

 

Payment Terms

1.Payment: T/T, L/C, Western Union, MoneyGram,PayPal; 30% deposits; 70% balance before delivery.

2.MOQ: 1pcs

3.Warranty : 3 years

4.Package Informations: 1) EXPORT, In 20 feet (GW 25 ton) or 40 feet Container (GW 25 ton)

                                           2)as customer's requirement


Why choose us? 

(1) The leading exporter in China special steel industry.       

(2) Large stocks for various sizes, fast delivery date.       

(3) Good business relationship with China famous factories.       

(4) More than 7 years steel exporting experience.       

(5) Good after-sales service guarantee. 


Q: How does special steel contribute to the aerospace defense machinery industry?
Special steel plays a crucial role in the aerospace defense machinery industry by providing exceptional strength, durability, and resistance to corrosion and high temperatures. It is used extensively in the manufacturing of various components such as landing gears, turbine blades, structural frames, and armor plating for military aircraft and defense systems. Its unique properties ensure optimal performance, safety, and reliability of these critical machines, enabling them to withstand challenging environments and extreme operating conditions.
Q: How does special steel perform in high-stress environments?
Special steel is designed specifically for high-stress environments, excelling in various forms of stress, including mechanical, thermal, and chemical stress. What sets it apart is its distinct composition and manufacturing process, resulting in exceptional resistance to stress. One of the standout features of special steel is its remarkable tensile strength. It can withstand immense pressure without deforming or failing. This strength is achieved by incorporating alloying elements like chromium, nickel, and molybdenum, which enhance its structural integrity and toughness. These elements also enhance the steel's resistance to corrosion and oxidation, ensuring its durability and reliability in harsh conditions. Additionally, special steel exhibits superb fatigue resistance, enabling it to endure repetitive and cyclic loading without developing cracks or fractures. This quality is crucial in high-stress environments where components are constantly subjected to vibrations or cyclic loading, such as in aerospace, automotive, and industrial applications. Not only does special steel possess impressive mechanical properties, but it also boasts exceptional resistance to extreme temperatures. It retains its strength and integrity even at elevated temperatures, making it suitable for use in high-temperature environments like power plants, furnaces, and chemical processing industries. Furthermore, special steel excels in wear resistance, enabling it to withstand abrasive conditions encountered in mining, construction, or manufacturing processes. This reduces the need for frequent maintenance or replacement, resulting in cost savings and increased productivity. In conclusion, special steel's outstanding performance in high-stress environments can be attributed to its unique combination of strength, durability, corrosion resistance, fatigue resistance, temperature resistance, and wear resistance. Its ability to withstand extreme conditions makes it the ideal choice for critical applications where reliability and safety are of utmost importance.
Q: What are the specific requirements for special steel used in the railway wheel industry?
The specific requirements for special steel used in the railway wheel industry include high strength and durability to withstand heavy loads and constant rolling, excellent fatigue resistance to withstand repeated stress cycles, good wear resistance to minimize wear and tear, and sufficient toughness to resist fractures. The steel should also possess good heat treatment properties to ensure proper hardening and tempering for desired strength and hardness levels. Additionally, it should have low impurities and be capable of withstanding harsh operating conditions, such as extreme temperatures and corrosion, to ensure a long service life.
Q: How does special steel contribute to the performance of cutting tools?
Special steel contributes to the performance of cutting tools in several ways. Firstly, it offers exceptional hardness and strength, enabling the cutting tool to withstand the high forces and pressures encountered during cutting. This durability ensures that the tool remains sharp for longer periods, reducing the need for frequent replacements. Additionally, special steel also possesses excellent heat resistance, preventing the tool from overheating and maintaining its cutting ability. Moreover, special steel can have specific alloying elements that enhance wear resistance, corrosion resistance, and toughness, further improving the performance and lifespan of cutting tools. Overall, the use of special steel in cutting tools enhances their efficiency, reliability, and longevity, resulting in improved cutting precision and reduced downtime.
Q: What are the different methods for improving the creep resistance of special steel?
Several methods exist to enhance the creep resistance of special steel. One commonly employed technique involves alloying. By incorporating specific alloying elements like chromium, molybdenum, and vanadium, the steel's creep resistance can be significantly improved. These alloying elements create stable carbides or nitrides that serve as obstacles to dislocation movement, thereby reducing the rate of creep deformation. Heat treatment represents another effective approach. By subjecting the steel to carefully controlled heating and cooling processes, the microstructure can be refined to enhance its creep resistance. Techniques such as quenching and tempering aid in the formation of a fine-grained structure, which in turn increases the steel's strength and resistance to creep. Surface modification offers an alternative means of improving creep resistance. Nitriding and carburizing techniques can be utilized to introduce nitrogen or carbon into the steel's surface layer, creating a hardened layer that enhances creep resistance. Moreover, grain size control can be achieved through methods like grain boundary engineering or severe plastic deformation. By refining the grain structure, the movement of dislocations within the material is impeded, resulting in improved creep resistance. Lastly, the application of coatings can also bolster the creep resistance of special steel. Coatings such as ceramic or metallic coatings provide a protective layer that hampers the diffusion of impurities and slows down the creep rate. To summarize, the improvement of creep resistance in special steel can be accomplished through various techniques, including alloying, heat treatment, surface modification, grain size control, and the use of coatings. These methods aim to fortify the steel's microstructure, hinder dislocation movement, and establish protective barriers against creep deformation.
Q: What are the advantages of using special steel in various industries?
Special steel offers several advantages in various industries. Firstly, it has superior strength and durability, making it ideal for applications that require high performance and long-lasting materials. Secondly, special steel has excellent corrosion resistance, making it suitable for industries exposed to harsh environments, such as marine, oil and gas, and chemical industries. Additionally, special steel is highly versatile, allowing for customization and adaptability to specific requirements. It also provides excellent heat resistance, making it suitable for industries that involve high temperatures, such as aerospace and automotive sectors. Lastly, special steel offers great machinability, facilitating efficient and precise manufacturing processes. Overall, the use of special steel in various industries enhances performance, longevity, and cost-effectiveness.
Q: What are the main environmental impacts of special steel production?
The main environmental impacts of special steel production include emissions of carbon dioxide (CO2) and other greenhouse gases, energy consumption, deforestation (for charcoal used in the production process), water pollution (from the disposal of waste materials and chemicals), and habitat destruction due to mining activities. Additionally, the extraction and processing of raw materials for special steel production, such as iron ore and coal, can contribute to land degradation and ecosystem disruption.
Q: How does special steel perform at high temperatures?
Special steel is designed to maintain its strength and resistance to deformation even at high temperatures. It exhibits excellent heat resistance, high thermal conductivity, and retains its mechanical properties, making it ideal for applications that require stability and durability in extreme heat environments.
Q: How does special steel perform in high-stress corrosion cracking environments?
Special steel performs exceptionally well in high-stress corrosion cracking environments. Due to its unique composition and enhanced resistance to corrosion, special steel can withstand the combination of mechanical stress and corrosive agents, minimizing the risk of cracking or failure. This makes it a highly reliable and preferred material choice for applications in industries such as oil and gas, chemical processing, and marine engineering.
Q: What are the different welding techniques for special steel?
There are several different welding techniques that can be used for special steel, depending on the specific requirements and characteristics of the steel. Some of the commonly used welding techniques for special steel include: 1. Shielded Metal Arc Welding (SMAW): Also known as stick welding, SMAW uses a consumable electrode coated in flux to create an arc between the electrode and the base metal. This technique is versatile and can be used for a wide range of steel types, including special steel. 2. Gas Metal Arc Welding (GMAW): Also known as MIG (Metal Inert Gas) welding, GMAW uses a continuous solid wire electrode and a shielding gas to protect the weld from atmospheric contamination. This technique is commonly used for thinner special steel materials. 3. Flux-Cored Arc Welding (FCAW): Similar to GMAW, FCAW uses a continuous tubular electrode filled with flux. This flux provides additional shielding and can allow for higher deposition rates. FCAW is suitable for special steel with thick sections or when welding in outdoor or windy conditions. 4. Gas Tungsten Arc Welding (GTAW): Also known as TIG (Tungsten Inert Gas) welding, GTAW uses a non-consumable tungsten electrode and a shielding gas. This technique is known for its precision and is often used for special steel alloys that require high-quality and aesthetically pleasing welds. 5. Plasma Arc Welding (PAW): PAW is similar to GTAW but uses a more focused arc created by passing gas through a constricted nozzle. This technique is often used for special steel alloys that have higher melting temperatures or require deeper penetration. 6. Submerged Arc Welding (SAW): SAW involves feeding a continuous wire electrode into a molten flux layer that covers the weld. This technique is commonly used for heavy and thick special steel sections, as it provides excellent penetration and high deposition rates. It is important to choose the most appropriate welding technique for special steel based on factors such as the steel composition, thickness, intended application, and desired weld quality. Consulting with a qualified welding professional or referring to the steel manufacturer's recommendations can help ensure the best welding technique is selected for the specific special steel being used.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords