• Grade AISI5152 CNBM Alloy Special Steel Round Bar System 1
  • Grade AISI5152 CNBM Alloy Special Steel Round Bar System 2
  • Grade AISI5152 CNBM Alloy Special Steel Round Bar System 3
  • Grade AISI5152 CNBM Alloy Special Steel Round Bar System 4
  • Grade AISI5152 CNBM Alloy Special Steel Round Bar System 5
Grade AISI5152 CNBM Alloy Special Steel Round Bar

Grade AISI5152 CNBM Alloy Special Steel Round Bar

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
30 m.t
Supply Capability:
10000 m.t/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Alloy Steel
Shape:
Steel Round Bar

Specifications of Round Bar

Diameter: 4mm - 800mm

Length: Max 12m

Heat Treatment: Normalizing, Annealing, Tempering, Quenching

 

Chemical Composition and Mechanical Properties

Chemical Composition

Mechanical Properties(In Quenched & Tempered State)

C

0.17-0.23

Tensile strength(MPA) 

930

Si

0.17-0.37

Yield strength (MPA)

735

Mn

0.90-1.20

Elongation(δ5/%)

10

Cr

0.90-1.20

Reduction in Area (ψ/%)

45

Mo

0.05

Impact  (J)

47

P

≤0.030

 

 

S

≤0.030

 

 

V

---

Hardness  

 187HBW

Our Featured Products

Alloy steel: Combination of steel / Bearing steel// Spring steel/ Cr- mo steel

GB 20Cr/ 40Cr / 42CrMo / 35CrMo/ 20CrMn/GCr15/30CrMnTi…

ASTM 5120 /5140 / 4140/ 4135/ 5152/52100…

JIS SCr420H/ SCr440/ SCM3/ SUP9/SUJ2…

 

Carbon steel: Carbon tool steel /Carbon Structural Steel

GB 20/ 35 /45/…

ASTM 1020/ 1030/1045…

JIS S20C/ S30C / S45C…

 

Usage and Applications of Round Bar

1. Chinese standard steel bar is often used where large amounts of steel need to be formed, for example as structural steel.

2. And we can use this kind of product on the performance of the mechanical parts if the demand is not very high.

3. Steel round bar is used in construction and a large number of architectural and engineering structures.

  

Packaging & Delivery of Round Bar

Packaging Detail: All goods are packed in bundle with steel strips and shipped by break bulk vessel or container (depend on target market and different ports)

Delivery Detail: 15~45 days

Trade terms: FOB, CFR, CIF

 

MOQ: 30 metric tons per specification; we can negotiate the quantity if the specification is normal or we have stock of one specification.

Weight: Theprice invoicing on theoretical weight basis or actual weight basis depends on customer’s request.

Shipment: The shipment of bulk break or container is depends on customer’s request and the situation of the port of destination.

Documents given: Full set of original clean on board bill of lading; Original signed commercial invoice; Original packing list; Policy of insurance; Certificate of origin and what the target market needs.

 

Production Flow of Round Bar

1. The common processes are preheated forging quenching, dual refinement solution process, cooling quenching and isothermal quenching. We use heat treatment for dual refinement solution process.

2. Material prepare (billet) — heat up — rough rolling — precision rolling — cooling — packing — storage and transportation

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q4: What makes stainless steel stainless?

A4: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

Q5: Can stainless steel rust?

A5: Stainless does not "rust" as you think of regular steel rusting with a red oxide on the surface that flakes off. If you see red rust it is probably due to some iron particles that have contaminated the surface of the stainless steel and it is these iron particles that are rusting. Look at the source of the rusting and see if you can remove it from the surface.

Grade AISI5152 CNBM Alloy Special Steel Round Bar

Grade AISI5152 CNBM Alloy Special Steel Round Bar

Q: How is shock-resistant alloy steel used in the production of impact-resistant parts?
Shock-resistant alloy steel is used in the production of impact-resistant parts due to its unique properties that make it highly resistant to deformation and fracture under high impact loads. The alloy steel's composition includes elements such as chromium, nickel, and molybdenum, which enhance its toughness and durability. These properties allow the alloy steel to absorb and disperse the energy generated during impact, effectively protecting the parts from damage. Additionally, the shock-resistant alloy steel's high strength enables it to withstand repeated impacts without losing its structural integrity, making it an ideal material for manufacturing impact-resistant parts used in various industries, including automotive, aerospace, and construction.
Q: How does special steel contribute to the power generation machinery industry?
Special steel plays a crucial role in the power generation machinery industry as it provides the necessary strength, durability, and resistance to extreme temperatures and corrosion. The use of special steel in components such as turbine blades, generator shafts, and boiler tubes enhances the overall efficiency and reliability of power generation machinery. Additionally, special steel's unique properties enable the production of more compact and lightweight equipment, leading to improved performance and reduced energy consumption.
Q: How does high-speed steel perform in high-temperature cutting operations?
High-speed steel performs exceptionally well in high-temperature cutting operations. Its unique combination of hardness, toughness, and heat resistance allows it to maintain its cutting edge even at elevated temperatures. This property helps in reducing tool wear, increasing tool life, and improving cutting speeds, making high-speed steel an ideal choice for high-temperature cutting operations.
Q: What are the different joining methods used for special steel?
The different joining methods used for special steel include welding, brazing, soldering, and mechanical fastening.
Q: Can special steel be used in electrical applications?
Yes, special steel can be used in electrical applications. Special steel, such as electrical steel or transformer steel, is specifically designed to have low electrical resistance and high magnetic permeability, making it ideal for use in electrical equipment like transformers, motors, and generators.
Q: How does special steel perform in casting applications?
Special steel performs well in casting applications due to its high strength, excellent heat resistance, and good corrosion resistance. These properties make it suitable for casting complex shapes and handling high temperatures, ensuring superior performance and durability in various industries such as automotive, aerospace, and energy.
Q: How does special steel contribute to the corrosion resistance of products?
Special steel contributes to the corrosion resistance of products through its unique composition and manufacturing processes. It is specifically designed to have a higher resistance to corrosion compared to regular steel. Special steel contains various alloying elements such as chromium, nickel, and molybdenum, which form a protective layer on the surface of the steel, preventing the corrosive agents from reaching the underlying metal. Additionally, the manufacturing techniques used for special steel, such as heat treatment and controlled cooling, further enhance its corrosion resistance properties. Overall, special steel plays a crucial role in ensuring the durability and longevity of products by minimizing the effects of corrosion.
Q: What are the different methods of surface protection for special steel?
There are several different methods of surface protection for special steel, each offering unique benefits and suitable for specific applications. Some of the most common methods include: 1. Galvanization: This process involves coating the steel with a layer of zinc, which provides excellent corrosion resistance. Galvanization can be done through hot-dip galvanizing or electroplating, depending on the specific requirements. 2. Paint coating: Applying a paint coating to the surface of special steel helps to protect it from corrosion and environmental elements. The paint acts as a barrier between the steel and external factors, preventing rust and damage. 3. Powder coating: Powder coating involves applying a dry powder to the steel surface and then heating it to form a protective layer. This method provides excellent resistance to corrosion, chemicals, and abrasion, making it ideal for applications where the steel is exposed to harsh conditions. 4. Electroplating: Electroplating involves depositing a layer of metal onto the steel surface through an electrochemical process. This method enhances the steel's corrosion resistance and can provide additional benefits such as increased hardness or improved aesthetics. 5. Thermal spraying: This method involves melting or heating a material, such as zinc or aluminum, and spraying it onto the steel surface to form a protective coating. Thermal spraying provides excellent corrosion protection and can be used to repair damaged surfaces. 6. Ceramic coating: Ceramic coatings are highly resistant to corrosion, abrasion, and high temperatures. They are often used in applications where the steel is exposed to extreme conditions, such as in the aerospace or automotive industries. 7. Passivation: Passivation is a chemical process that removes free iron and other contaminants from the surface of stainless steel. This helps to improve the steel's corrosion resistance by forming a passive oxide layer. It is important to select the appropriate surface protection method based on the specific requirements of the steel and the application it will be used in. Factors such as the level of corrosion resistance needed, the environmental conditions, and the desired lifespan of the steel should all be considered when choosing a surface protection method.
Q: How does special steel contribute to the construction equipment industry?
Special steel contributes to the construction equipment industry by providing high strength, durability, and resistance to wear and tear. This type of steel is specifically designed to withstand harsh working conditions, such as heavy loads, extreme temperatures, and abrasive materials. Special steel components, such as gears, bearings, and cutting edges, improve the performance and lifespan of construction equipment, enabling them to operate efficiently and reliably. Additionally, special steel alloys offer flexibility in design and manufacturing, allowing for the production of lighter and more fuel-efficient machines, ultimately contributing to increased productivity and cost-effectiveness in the construction industry.
Q: How does special steel contribute to the railway industry?
Special steel plays a crucial role in the railway industry by contributing to the development and maintenance of efficient and reliable rail systems. The unique properties of special steel, such as high strength, durability, and resistance to wear and tear, make it an ideal material for various components and structures within the railway infrastructure. One of the key areas where special steel contributes to the railway industry is in the manufacturing of rails. Special steel rails are designed to withstand heavy loads and intense usage, ensuring the safe and smooth movement of trains. These rails are highly resistant to wear, fatigue, and deformation, resulting in longer service life and reduced maintenance costs. Additionally, special steel is used in the manufacturing of wheelsets, which are critical components of trains. The high strength and durability of special steel make it ideal for wheelset production, ensuring reliable performance and minimizing the risk of derailments. The use of special steel in wheelsets also contributes to increased operational efficiency, as it reduces friction and enhances energy transmission, leading to improved fuel economy and reduced environmental impact. Furthermore, special steel is utilized in the construction of bridges, tunnels, and other infrastructure elements within the railway network. These structures must withstand heavy loads, extreme weather conditions, and various environmental factors. Special steel's exceptional strength, corrosion resistance, and longevity make it a preferred choice for such applications, ensuring the safety and reliability of rail systems. In summary, special steel significantly contributes to the railway industry by providing the necessary strength, durability, and resistance to wear and tear for various components and structures. Its use in rails, wheelsets, and infrastructure elements enhances the efficiency, reliability, and safety of rail systems, ultimately benefiting passengers, freight transport, and the overall transportation sector.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords