Hot Forged Alloy Steel 4140 Round Bars Special Steel
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 30 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Main Product
Plastic Mould Steel
DIN 1.2311,1.2738,1.2083,1.2316 etc.
AISI P20,P20+Ni,420 etc.
JIS SUS420J2
Hot Work Steel
DIN 1.2344,1.2343,1.2367,1.2365,1.2581,1.2713 etc.
AISI H13,H11,H10,H21, etc.
JIS SKD61,SKD6,SKD5,SKT4 etc.
Cold Work Steel
DIN 1.2739, 1.2601, 1.2080, 1.2436, 1.2631, 1.263, 1.2510, 1.2327 etc.
AISI D2, D5, D3, D6, A8, A2, O1 etc.
JIS SKD10, SKD11, SKD1, SKS3 etc.
High Speed Steel
DIN 1.3343, 1.3243, 1.3247, 1.3355 etc.
AISI M2, M35, M42, T1 etc.
JIS SKH51, SKH35, SKH59, SKH2 etc.
Alloy Structural Steel
DIN 1.7035,1.6511,1.7220,1.7225 etc.
AISI 5140, 4340, 4135, 4140 etc.
JIS SCr440,SNCM439,SCM435,SCM440 etc.
Stainless & Carbon Steel or Others
DIN 1.4125,1.1191 etc
AISI 440C,1045, 1020 etc.
JIS SUS440C,S45C etc
Carbon Steel Round Bar | SS400, S235JR,Q235, ASTM A36, Fe360A, Fe360B,SM400A,080A15, SS41,E235B |
SAE 1020, AISI 1020, ASTM 1020, S20C, 20#, 050A20 | |
SAE 1045, AISI 1045, ASTM 1045, S45C, 45#,EN8, XC45, XC48, 45B, C45, CK45, CM45, 060A47, R683/IC45e | |
Alloy Steel Round Bar | 40Cr, DIN 1.7035, SAE 5140, AISI 5140, ASTM 5140, SCr440, 41Cr4, 530A40, 42Cr4, 40X, R683/VII3 |
SAE4140,42CrMo, 42CrMo4, DIN 1.7225, SCM440,EN19, 42CD4, 708M40, R683/II3 | |
SAE 4340, 40CrNiMoA, EN24, SNCM439, 817M40,40XMA, R683/III4 | |
SAE 8620,,AISI 8620, ASTM 8620, 20CrNiMo,SNCM220, 805M20 | |
SAE52100, AISI52100,ASTM E52100, GCr15, SUJ2, 100C6, 100Cr6, 1.3505, 534A99, IIIX15 |
Product show
Workshop show
Shipping
1. FedEx/DHL/UPS/TNT for samples, Door-to-Door;
2. By Air or by Sea for batch goods, for FCL; Airport/ Port receiving;
3. Customers specifying freight forwarders or negotiable shipping methods!
Delivery Time: 3-7 days for samples; 5-25 days for batch goods.
Payment Terms
1.Payment: T/T, L/C, Western Union, MoneyGram,PayPal; 30% deposits; 70% balance before delivery.
2.MOQ: 1pcs
3.Warranty : 3 years
4.Package Informations: 1) EXPORT, In 20 feet (GW 25 ton) or 40 feet Container (GW 25 ton)
2)as customer's requirement
Why choose us?
(1) The leading exporter in China special steel industry.
(2) Large stocks for various sizes, fast delivery date.
(3) Good business relationship with China famous factories.
(4) More than 7 years steel exporting experience.
(5) Good after-sales service guarantee.
- Q: How does special steel perform in high-pressure environments?
- Special steel performs exceptionally well in high-pressure environments due to its superior strength, durability, and resistance to corrosion. Its unique composition and advanced manufacturing processes enable it to withstand extreme pressures, preventing deformation and maintaining structural integrity. Additionally, special steel's high tensile strength allows it to handle the immense stress and pressure without compromising its performance or safety.
- Q: Can special steel be used in the automotive parts manufacturing industry?
- Yes, special steel can be used in the automotive parts manufacturing industry. Special steel, such as high-strength, heat-resistant, or corrosion-resistant alloys, can provide enhanced durability, performance, and safety in automotive components like engine parts, suspension systems, and body structures. The use of special steel can improve the overall quality and longevity of automotive parts, ensuring better performance and reliability of vehicles.
- Q: How does special steel perform in molding applications?
- Special steel performs exceptionally well in molding applications due to its unique properties. It possesses high strength, excellent wear resistance, and superior heat resistance, making it highly suitable for withstanding the demanding conditions of molding processes. Special steel also offers excellent dimensional stability, ensuring precise and accurate moldings. Furthermore, its corrosion resistance helps to prolong the lifespan of the molds, reducing maintenance costs. Overall, special steel enhances the performance and efficiency of molding applications, resulting in high-quality and durable products.
- Q: How does special steel contribute to the energy equipment industry?
- The energy equipment industry heavily relies on special steel due to its crucial role in providing strength, durability, and resistance to extreme conditions. This industry encompasses various sectors, including oil and gas, renewable energy, power generation, and transmission. In the oil and gas sector, special steel is indispensable for constructing pipelines, drilling equipment, and storage tanks. Its unique properties, such as high tensile strength, corrosion resistance, and ability to withstand high pressure and temperature, make it an ideal material for these applications. Special steel ensures the safety and reliability of oil and gas operations by enduring harsh environments like corrosive substances and extreme weather conditions. The renewable energy sector also relies on special steel for manufacturing wind turbines, solar panels, and hydroelectric power systems. These energy sources require materials that are both strong and lightweight to withstand constant exposure to nature's elements. Special steel alloys, like high-strength low-alloy (HSLA) steel and stainless steel, are commonly used to construct the infrastructure of renewable energy systems, ensuring their longevity and efficiency. Moreover, special steel is essential for power generation and transmission equipment. It is utilized in the manufacturing of gas turbines, steam turbines, and generators. Special steel alloys can withstand the high temperatures and pressures generated during power generation processes, ensuring efficient and reliable energy production. Additionally, special steel is used in transmission infrastructure, including transmission towers and power cables, to support the efficient and safe transfer of electricity over long distances. Overall, special steel significantly contributes to the energy equipment industry by providing the necessary strength, durability, and resistance to extreme conditions. It enables the construction of reliable and efficient infrastructure, ensuring the smooth operation of energy systems in oil and gas, renewable energy, power generation, and transmission sectors.
- Q: How does special steel contribute to the automotive engine industry?
- The automotive engine industry relies heavily on special steel, which offers exceptional strength, durability, and performance to various engine components. Special steel's distinctive characteristics make it an ideal choice for manufacturing crucial parts like crankshafts, connecting rods, camshafts, valves, and cylinder liners. One significant advantage of special steel in the automotive engine industry is its remarkable strength and ability to withstand high temperatures. Engine components face intense heat and pressure, but special steel alloys are specifically designed to maintain their structural integrity and functionality under extreme conditions. This durability improves engine efficiency, reliability, and longevity. Additionally, special steel's superior mechanical properties, such as high tensile and impact strength, allow for the production of lighter yet stronger engine components. By reducing the weight of these parts, special steel helps enhance fuel efficiency and reduce emissions, making it an environmentally friendly choice for automotive manufacturers. Special steel also enables the production of more intricate and precise engine components. Its excellent machinability and formability allow for intricate designs, tighter tolerances, and improved performance. This contributes to the overall efficiency and power output of the engine. Furthermore, special steel's corrosion resistance properties are crucial in preventing engine components from deteriorating over time. Its ability to resist rust and other forms of corrosion ensures that the engine operates optimally for an extended period, reducing maintenance costs and improving overall performance. Overall, special steel's unique properties, including strength, durability, heat resistance, and corrosion resistance, make it an essential material in the automotive engine industry. Its contribution lies in providing superior performance, efficiency, and longevity to critical engine components, ultimately enhancing the overall driving experience for consumers.
- Q: How does heat-resistant steel perform in high-temperature applications?
- Heat-resistant steel performs well in high-temperature applications as it retains its mechanical properties, such as strength and hardness, at elevated temperatures. It exhibits excellent resistance to thermal fatigue, oxidation, and creep, making it suitable for applications where exposure to extreme heat and stress is common. Additionally, heat-resistant steel maintains dimensional stability and can withstand thermal cycling without significant deformation or degradation, ensuring long-term reliability in high-temperature environments.
- Q: How does tool steel maintain its hardness at high temperatures?
- Tool steel maintains its hardness at high temperatures primarily due to its high carbon content and the presence of other alloying elements. The carbon in tool steel forms hard and wear-resistant carbides, which help retain hardness even at elevated temperatures. Additionally, alloying elements such as chromium, tungsten, molybdenum, and vanadium contribute to the formation of secondary carbides, which further enhance the steel's resistance to softening and maintain its hardness under high heat conditions.
- Q: What are the different testing methods for special steel?
- To ensure the quality and performance of special steel, there are various testing methods commonly used. These methods encompass: 1. Chemical Analysis: Determining the steel's chemical composition, including elements and impurities, is crucial. It confirms adherence to specific chemical composition requirements. 2. Mechanical Testing: Evaluating mechanical properties like strength, ductility, hardness, and toughness is achieved through tests such as tensile, impact, hardness, and fatigue testing. 3. Microstructure Analysis: Assessing the steel's internal structure, grain size, and shape requires microscopic examination. Techniques like optical and electron microscopy, as well as X-ray diffraction, help identify any defects or abnormalities. 4. Non-Destructive Testing (NDT): Inspecting the steel without causing damage is possible through NDT methods. These include ultrasonic, magnetic particle, liquid penetrant, and radiographic testing to detect surface and subsurface defects. 5. Corrosion Testing: In applications where corrosion resistance is vital, various methods like salt spray, electrochemical, and immersion testing are employed. They evaluate the steel's resistance and corrosion rate. 6. Metallography: Preparing a cross-section of the steel sample, polishing it, and etching it reveals its microstructure. This aids in assessing quality, heat treatment effects, and grain size distribution. 7. Dimensional and Surface Inspection: Ensuring the steel meets required dimensional tolerances and surface quality is crucial. Techniques like dimensional measurement, surface roughness measurement, and visual inspection verify conformity. By implementing these testing methods, manufacturers and quality control personnel ensure that special steel meets the necessary standards, specifications, and customer requirements.
- Q: How is high-strength steel used in the automotive industry?
- High-strength steel is extensively used in the automotive industry for various applications such as structural components, safety systems, and body panels. It provides enhanced strength and durability while reducing the weight of vehicles, thereby improving fuel efficiency and overall performance. Additionally, high-strength steel also ensures increased passenger safety by reinforcing the vehicle's structure and offering better crash protection.
- Q: What are the different methods for improving the wear resistance of special steel?
- There are several methods for improving the wear resistance of special steel. Some common techniques include heat treatment processes such as quenching and tempering, which can increase the hardness and toughness of the steel. Another method is surface coating, where a thin layer of a wear-resistant material like carbides or ceramics is applied to the steel surface. Additionally, alloying the steel with elements like chromium, vanadium, or tungsten can enhance its wear resistance properties. Finally, precision machining and grinding can be used to achieve a smoother surface finish, reducing friction and wear.
Send your message to us
Hot Forged Alloy Steel 4140 Round Bars Special Steel
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 30 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords