• Hot Forged Alloy Steel 4140 Round Bars Special Steel System 1
  • Hot Forged Alloy Steel 4140 Round Bars Special Steel System 2
Hot Forged Alloy Steel 4140 Round Bars Special Steel

Hot Forged Alloy Steel 4140 Round Bars Special Steel

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
30 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Alloy Steel
Shape:
Steel Round Bar
Standard:
AISI,ASTM,JIS,GB,BS,DIN,API,EN
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round,Rectangular,Oval,LTZ
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Net Weight:
as required
Length:
as required
Thickness:
as required

Main Product

Plastic Mould Steel 

DIN 1.2311,1.2738,1.2083,1.2316 etc. 

AISI P20,P20+Ni,420 etc. 

JIS SUS420J2 

 Hot Work Steel 

DIN 1.2344,1.2343,1.2367,1.2365,1.2581,1.2713 etc. 

AISI H13,H11,H10,H21, etc. 

JIS SKD61,SKD6,SKD5,SKT4 etc. 

 Cold Work Steel 

DIN 1.2739, 1.2601, 1.2080, 1.2436, 1.2631, 1.263, 1.2510, 1.2327 etc. 

AISI D2, D5, D3, D6, A8, A2, O1 etc. 

JIS SKD10, SKD11, SKD1, SKS3 etc. 

 High Speed Steel 

DIN 1.3343, 1.3243, 1.3247, 1.3355 etc. 

AISI M2, M35, M42, T1 etc.

JIS SKH51, SKH35, SKH59, SKH2 etc. 

 Alloy Structural Steel 

DIN 1.7035,1.6511,1.7220,1.7225 etc. 

AISI 5140, 4340, 4135, 4140 etc. 

JIS SCr440,SNCM439,SCM435,SCM440 etc. 

 Stainless & Carbon Steel or Others 

DIN 1.4125,1.1191 etc 

AISI 440C,1045, 1020 etc. 

JIS SUS440C,S45C etc

Carbon Steel Round Bar

SS400, S235JR,Q235, ASTM A36, Fe360A, Fe360B,SM400A,080A15, SS41,E235B

SAE 1020, AISI 1020, ASTM 1020, S20C, 20#, 050A20

SAE 1045, AISI 1045, ASTM 1045, S45C, 45#,EN8, XC45, XC48, 45B, C45, CK45, CM45, 060A47, R683/IC45e

Alloy Steel Round Bar

40Cr, DIN 1.7035, SAE 5140, AISI 5140, ASTM 5140, SCr440, 41Cr4, 530A40, 42Cr4, 40X, R683/VII3

SAE4140,42CrMo, 42CrMo4, DIN 1.7225, SCM440,EN19, 42CD4, 708M40, R683/II3

SAE 4340, 40CrNiMoA, EN24, SNCM439, 817M40,40XMA, R683/III4

SAE 8620,,AISI 8620, ASTM 8620, 20CrNiMo,SNCM220, 805M20

SAE52100, AISI52100,ASTM E52100, GCr15, SUJ2, 100C6, 100Cr6, 1.3505, 534A99, IIIX15

Product show

.jpg


Workshop show

Hot Forged Alloy Steel 4140 Round Bars Special Steel


Shipping 

1. FedEx/DHL/UPS/TNT for samples, Door-to-Door;

2. By Air or by Sea for batch goods, for FCL; Airport/ Port receiving;

3. Customers specifying freight forwarders or negotiable shipping methods!

Delivery Time: 3-7 days for samples; 5-25 days for batch goods.

 

Payment Terms

1.Payment: T/T, L/C, Western Union, MoneyGram,PayPal; 30% deposits; 70% balance before delivery.

2.MOQ: 1pcs

3.Warranty : 3 years

4.Package Informations: 1) EXPORT, In 20 feet (GW 25 ton) or 40 feet Container (GW 25 ton)

                                        2)as customer's requirement



Why choose us? 

(1) The leading exporter in China special steel industry.       

(2) Large stocks for various sizes, fast delivery date.       

(3) Good business relationship with China famous factories.       

(4) More than 7 years steel exporting experience.       

(5) Good after-sales service guarantee. 


Q: What are the different forging techniques used for special steel?
There are several forging techniques used for special steel, including open die forging, closed die forging, and ring rolling. Open die forging involves shaping the steel between flat dies, allowing for flexibility in the size and shape of the final product. Closed die forging, on the other hand, uses shaped dies to shape the steel into a specific form. Ring rolling is a technique used to produce seamless rings by rolling a heated steel billet between two rotating rolls to achieve the desired shape. These techniques ensure the production of high-quality, customized special steel products for various applications.
Q: What are the main applications of special steel in the automotive electrical systems?
Special steel is commonly used in automotive electrical systems for various applications such as manufacturing electrical connectors, terminals, and wiring harnesses. It offers high conductivity, corrosion resistance, and superior strength, making it an ideal choice for components that require efficient flow of electrical current and durability in harsh environments. Additionally, special steel can also be utilized in the construction of sensors, relays, and other electronic devices within the automotive electrical system, ensuring reliable performance and longevity.
Q: What are the properties of corrosion-resistant steel?
Corrosion-resistant steel, also known as stainless steel, possesses several key properties. Firstly, it has a high resistance to corrosion, making it suitable for use in environments with exposure to moisture or corrosive substances. Secondly, it contains a minimum of 10.5% chromium, which forms a protective layer called chromium oxide on the surface, preventing further corrosion. Additionally, it has a strong resistance to staining, which makes it easy to clean and maintain. Moreover, corrosion-resistant steel exhibits excellent strength and durability, making it suitable for a wide range of applications in various industries.
Q: What are the different heat treatment furnaces used for special steel?
Different heat treatment furnaces used for special steel include annealing furnaces, tempering furnaces, hardening furnaces, and quenching furnaces.
Q: What are the main applications of special steel in the telecommunications sector?
Special steel is widely used in the telecommunications sector for various applications. One of the main uses is in the manufacturing of transmission towers and antennas, where high strength and corrosion resistance properties are crucial for ensuring stability and durability. Special steel is also utilized in the production of cables and wires, providing excellent conductivity and resistance to wear and tear. Additionally, special steel is employed in the fabrication of satellite communication equipment, providing the necessary strength and resilience to withstand harsh environmental conditions. Overall, special steel plays a vital role in the telecommunications sector by enabling the construction of reliable and high-performance infrastructure.
Q: How does special steel contribute to the food processing industry?
Special steel contributes to the food processing industry by providing high-quality and durable materials for the production of equipment and machinery. The unique properties of special steel, such as corrosion resistance, heat resistance, and hygiene, ensure that the food processing industry can maintain strict standards of cleanliness and efficiency. This type of steel is used in various applications, including cutting, grinding, and packaging, ultimately enhancing the safety, productivity, and longevity of food processing operations.
Q: What are the factors affecting the machinability of special steel?
There are several factors that can affect the machinability of special steel. 1. Alloying elements: The composition of special steel plays a significant role in its machinability. Some alloying elements, such as sulfur and lead, can improve machinability by creating free-cutting properties. On the other hand, elements like chromium and nickel can make the steel harder to machine. 2. Hardness: The hardness of special steel can impact its machinability. As the hardness increases, the steel becomes more difficult to machine. Harder steel requires higher cutting forces, which can result in increased tool wear and slower machining speeds. 3. Microstructure: The microstructure of special steel, including grain size and distribution, can affect its machinability. Fine-grained steels generally have better machinability compared to coarse-grained ones. Additionally, the presence of certain phases, such as carbides, can make machining more challenging. 4. Heat treatment: The heat treatment process used on special steel can influence its machinability. Some heat treatments, like annealing or stress relieving, can improve machinability by reducing hardness and internal stresses. Conversely, hardening treatments can increase hardness and make the steel more difficult to machine. 5. Cutting conditions: The choice of cutting parameters, such as cutting speed, feed rate, and depth of cut, can impact machinability. Optimal cutting conditions need to be selected to balance productivity and tool life. Inadequate cutting conditions can lead to excessive tool wear, poor surface finish, and reduced machining efficiency. 6. Tool material and geometry: The selection of cutting tools is crucial to the machinability of special steel. The tool material must have appropriate hardness, toughness, and wear resistance to withstand the cutting forces generated during machining. The tool geometry, including rake angle and relief angle, also affects chip formation and heat dissipation, which can influence machinability. 7. Lubrication and cooling: The use of proper lubrication and cooling methods is essential for good machinability. Lubricants help reduce friction and heat generation during machining, while cooling methods, such as flood cooling or misting, can dissipate heat and prolong tool life. Insufficient lubrication or cooling can result in increased tool wear, surface finish issues, and reduced machinability. Overall, the machinability of special steel is influenced by a combination of factors related to its composition, microstructure, heat treatment, cutting conditions, tooling, and cooling methods. Understanding and optimizing these factors can lead to improved machinability and productivity in machining special steels.
Q: What are the limitations of using special steel in high-temperature applications?
The use of special steel in high-temperature applications is not without its limitations. One of the main limitations is the potential for thermal expansion. Special steel, like any other material, expands when exposed to high temperatures. This expansion can lead to dimensional changes and stress within the material, which may affect the overall performance and integrity of the structure. Another limitation is the possibility of oxidation and corrosion. High temperatures can accelerate the oxidation process, causing the steel to form oxides on its surface. These oxides can lead to corrosion and weaken the material over time. To mitigate this limitation, special steel alloys with enhanced resistance to oxidation and corrosion are often used in high-temperature applications. Furthermore, special steel may also experience a decrease in strength at elevated temperatures. The mechanical properties of the material, such as tensile strength and hardness, can be significantly reduced as the temperature rises. This reduction in strength can compromise the structural integrity of the component, making it more susceptible to failure. Lastly, special steel may have a limited temperature range in which it can maintain its desired properties. Beyond a certain temperature threshold, the material may undergo phase transformations or experience degradation, resulting in a loss of its intended characteristics. It is essential to carefully consider the operating temperature and select the appropriate special steel alloy with a suitable temperature range for the specific high-temperature application. In summary, while special steel offers numerous advantages for high-temperature applications, including excellent strength, durability, and heat resistance, it is important to be aware of its limitations. Thermal expansion, oxidation and corrosion, reduced strength at high temperatures, and temperature restrictions are factors that need to be considered and addressed when utilizing special steel in such applications.
Q: How is special steel used in the aerospace sector?
Special steel is used in the aerospace sector for various applications such as manufacturing engine components, landing gear, and structural parts. Its high strength-to-weight ratio, corrosion resistance, and ability to withstand extreme temperatures make it ideal for enhancing the performance, durability, and safety of aircraft.
Q: How does special steel compare to other high-performance materials?
Special steel is known for its exceptional strength, durability, and versatility, which sets it apart from other high-performance materials. Compared to materials like aluminum, titanium, and composites, special steel often exhibits higher tensile strength, making it suitable for applications that require robustness and load-bearing capabilities. Additionally, special steel has excellent resistance to corrosion, heat, and wear, making it ideal for use in harsh environments or high-temperature applications. One advantage of special steel over other high-performance materials is its cost-effectiveness. Compared to materials like titanium, special steel is more affordable, making it a preferred choice for various industries. Moreover, the manufacturing process of special steel allows for customization, enabling the production of a wide range of grades and compositions to suit specific requirements. Special steel also offers excellent machinability and weldability, allowing for easy fabrication and assembly. Its versatility enables it to be used in a wide range of industries, including automotive, aerospace, construction, and energy. From structural components to precision tools, special steel provides a reliable and efficient solution. However, it is important to note that the choice of material depends on the specific application and its requirements. While special steel has numerous advantages, other high-performance materials may be more suitable for certain applications, such as lightweight components or extreme temperature conditions. Therefore, a comprehensive evaluation of the specific needs and characteristics of the application is necessary before determining the most appropriate material.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords