• Solar Inverter Amazon - Three Phase 17k Solar Inverter Made in China System 1
  • Solar Inverter Amazon - Three Phase 17k Solar Inverter Made in China System 2
  • Solar Inverter Amazon - Three Phase 17k Solar Inverter Made in China System 3
Solar Inverter Amazon - Three Phase 17k Solar Inverter Made in China

Solar Inverter Amazon - Three Phase 17k Solar Inverter Made in China

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
0 watt
Supply Capability:
10000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description of Three Phase 17k Solar Inverter

Solar ac power system consists of solar panels, charge controllers, inverter and battery; Solar energy does not include inverter dc power system. Inverter is a kind of power conversion device, inverter by incentives can be divided into self-excited oscillation inverter and separately excited oscillation inverter.

 

Features of Three Phase 17k Solar Inverter

Including three series,7 models

Both economical and high effciency

Smaller and lighter, 20Kw-TL weighs only 45kg

External Inductor

LCD screen with four buttons

Ethernet wifi or GPRS cascade data communication technology

User, installer, distrbutor, Omnik headquarter all-round remote control

Meets VDE-AR-N4105,BDEW approval

Built-in lightning protection module as an option 

Advantages of Three Phase 17k Solar Inverter

Meets all the needs of medium power three phase inverter

Economy, high reliability and long life circle

Convenient to transport and install

Reducing machine temperature, extends device lifetime

Easy to operate, user friendly

One power station needs only one monitoring equipment

Real-time operation condition accessible, fast fault responding speed

Adjustable active and reactive power

Built-in lighting protection module

 

Technical Data of Three Phase 17k Solar Inverter

 

TypeOmniksol-17k-TL
Input(DC)
Max.PV Power17600W
Max,DC Voltage1000V
Nominal DC Voltage640V
Operating MPPT Voltage Range250-800V
MPPT Voltage Range at Nominal Power440-800V
Start up DC Voltage 300V
Turn off DC Voltage250V
Max, DC Current(A/B)22A/22A
Max, Short Cicuit Current for each MPPT25A/25A
Number of MPP trackers2
Max, Input Power for each MPPT*5000W
Number of DC ConnectionA:3/B:3
DC Connection TypeMC4 connector

 

Output(AC)
Max,AC Apparent Power17000VA
Nominal AC Power (cos phi = 1)17000W
Nominal AC Voltage3/N/PE;220/380V
3/N/PE;230/400V
3/N/PE;240/415V
Nominal Grid Frequency50Hz/60Hz
Max, AC Current26.0A
Grid Voltage Range**185-276V
Grid Frequency Range**45-55Hz/55-65Hz
Power Factor0.9 capacitive... 0.9 inductive
Total Harmonic Distortion(THD)<2%
Feed in Starting Power60W
Night time Power Consumption<1W
Standby Consumption<12W
AC Connection TypePlug-in connertor

 

 

Efficiency
Max,Efficiency98.1%
Euro Efficiency97.6%
MPPT Efficiency99.9%

 

Safety and Protection
DC Insulation MonitoringYes
DC SwitchOptional
Residual Current Monitoring Unit (RCMU)Integrated
Grid Monitoring with Anti-islandingYes
Electricity Fuse ProtectionYes
Protection ClassⅠ(According to IEC 62103)
Overvoltage CategoryPV Ⅱ/ Mains Ⅲ(According to IEC 62109-1)

 

Reference Standard
Safety StandardEN 62109, AS/NZS 3100
EMC StandardEN 6100-6-1, EN 6100-6-2, EN 6100-6-3 EN 6100-6-4, EN 6100-3-2, EN 6100-3-3
Grid StandardVDE-AR-N4105. VDE-0126-1-1,G83/1,EN 50438,RD1699,CEI 0-21, AS4777,C10/C11
Physical Structure
Dimensions575x650x248mm
Weight45kg
Environmental Protection RatingIP 65 (According to IEC 60529)
Cooling ConceptNatural convection
Mounting InformationWall bracket

 

General Data
Operating Temperature Range-25℃ to +60℃(derating above 45℃)
Relative Humidity0% to 98%, no condensation
Max. Altitude (above sea level)2000m
Noise Type<45dB
Isolation TypeTransformerless
DisplayTFT Graphic Display
Data CommunicationRS485(WiFi, GRPS optional)
Computer CommunicationRS485(USB)
Standard Warranty10 Years (5-15 years optional)

 

IMages of Three Phase 17k Solar Inverter

Three Phase 17k Solar Inverter made in China

Three Phase 17k Solar Inverter made in China

Three Phase 17k Solar Inverter made in China

 

FAQ

Q: Do you have the CE, TUV, UL Certification?

A: We’ve already passed all the tests, and any certificate is available.

Q: Have you ever sold your products to companies in my country?

A: Of course, we have customers in all general PV markets, but I think we should expand our market share along with the market growth.

Q: When did your company set up?  You are a new company, how can I believe your quality?

A: We entered into Solar PV industry in 2005, now we have several plants in manufacturing of a-Si and c-Si panels, and our capacity is 220MW per year. Till now we have already passed all the tests by authorized laboratories, e.g. TUV, CE, UL.

 Q: Can you help us install the module if we cooperate with you?

A: We haven’t entered into installation sector, but we have the plan in near future.

Q: How do you pack your products?

A: We have rich experience on how to pack the panels to make sure the safety on shipment when it arrives at the destination.

Q: Can you do OEM for us?

A: Yes, we can.

Q: Can we visit your factory?

A: Surely, I will arrange the trip basing on your business schedule.

 

Q: What is the role of a data logger in a solar inverter?
The role of a data logger in a solar inverter is to collect and store important data related to the performance and operation of the solar inverter system. It records various parameters such as energy production, voltage, current, temperature, and other relevant information. This data is then used for analysis, monitoring, and optimization of the solar energy system.
Q: Can a solar inverter be controlled remotely?
Indeed, remote control of a solar inverter is possible. Numerous contemporary solar inverters are furnished with integrated communication capabilities like Wi-Fi or Ethernet connectivity, granting the ability to monitor and control them from a distance. Users can access and manage their solar inverters from any location with an internet connection through a web-based interface or a dedicated mobile app. The remote control features typically encompass performance monitoring, settings adjustment, and issue troubleshooting. This remote control functionality provides solar system owners with convenience and flexibility, empowering them to maximize energy production and efficiently manage their systems.
Q: How does a solar inverter ensure safety during maintenance?
A solar inverter ensures safety during maintenance by having various safety features and protocols in place. These may include automatic shutdown mechanisms that disconnect the inverter from the grid and solar panels, preventing any electrical current flow. In addition, many inverters have built-in monitoring systems that provide real-time information on voltage, current, and temperature, alerting maintenance personnel of any potential hazards. Proper labeling and clear instructions are also provided to ensure safe handling and maintenance procedures.
Q: What are the safety considerations when installing a solar inverter?
Safety considerations when installing a solar inverter include ensuring proper electrical grounding, following manufacturer's instructions and guidelines, using appropriate personal protective equipment, avoiding contact with live electrical components, testing the system for proper operation before energizing, and complying with local electrical codes and regulations.
Q: Are there any safety concerns associated with solar inverters?
Yes, there are some safety concerns associated with solar inverters. One of the primary concerns is the risk of electrical shocks or fires due to faulty installation or maintenance of the inverter. Additionally, some inverters may generate heat during operation, and if not properly ventilated, it can pose a fire hazard. It is crucial to follow proper installation guidelines, regularly maintain the inverter, and hire qualified professionals to minimize these safety risks.
Q: What is the role of a solar inverter in power factor correction?
The role of a solar inverter in power factor correction is to convert the direct current (DC) generated by the solar panels into alternating current (AC) that can be used by the electrical grid. In doing so, the solar inverter ensures that the AC power being fed into the grid has a power factor close to unity, which means it is efficient and does not cause any unnecessary strain on the electrical system. This helps to improve the overall power quality and efficiency of the solar energy system.
Q: Can a solar inverter be used in systems with multiple inverters?
Yes, a solar inverter can be used in systems with multiple inverters. In fact, in large-scale solar installations, multiple inverters are often used to handle the increased power output. These inverters are connected in parallel or series to ensure efficient and reliable operation of the entire system.
Q: Are all solar inverters compatible with all solar panels?
No, not all solar inverters are compatible with all solar panels. The compatibility between inverters and panels depends on factors such as voltage, power output, and technology. It is important to ensure that the inverter and solar panels are compatible to optimize the performance and efficiency of the solar energy system.
Q: Can a solar inverter be used with a solar carport?
Yes, a solar inverter can be used with a solar carport. A solar inverter is a device that converts the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used to power various electrical devices. In the case of a solar carport, the solar panels installed on the carport structure can generate DC electricity, which can then be converted into AC electricity by the inverter to power electric vehicles or to be fed back into the grid.
Q: Can a solar inverter be used with solar-powered data centers?
Yes, a solar inverter can be used with solar-powered data centers. A solar inverter converts the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power electrical equipment, including data centers. By connecting the solar panels to a solar inverter, the generated solar energy can be effectively utilized to power data centers, making them more sustainable and reducing reliance on traditional power sources.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords