Different Material Hot Rolled Dedormed Steel Rebar
- Loading Port:
- China main port
- Payment Terms:
- TT or LC
- Min Order Qty:
- 50 m.t.
- Supply Capability:
- 200000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specifications of Different Material Hot Rolled Dedormed Steel Rebar
Standard | GB | HRB500 | |
Diameter | 6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm, 22mm,25mm,28mm,32mm,36mm,40mm,50mm | ||
Length | 6M, 9M,12M or as required | ||
Payment term | TT or L/C | ||
Application | mainly used in construction industry to reinforce concrete structures and so on | ||
Quality | First quality, the goods are from Chinese big manufacturers. | ||
Type | Hot rolled deformed steel bar | ||
Brand name | DRAGON |
Chemical Composition of Different Material Hot Rolled Dedormed Steel Rebar
(Please kindly find our chemistry of our material based on HRB500 as below for your information)
Grade | Technical data of the original chemical composition (%) | ||||||
C | Mn | Si | S | P | V | ||
HRB500 | ≤0.25 | ≤1.60 | ≤0.80 | ≤0.045 | ≤0.045 | 0.08-0.12 | |
Physical capability | |||||||
Yield Strength (N/cm²) | Tensile Strength (N/cm²) | Elongation (%) | |||||
≥500 | ≥630 | ≥12 | |||||
Theoretical weight and section area of each diameter as below for your information:
Diameter(mm) | Section area (mm²) | Mass(kg/m) | Weight of 12m bar(kg) |
6 | 28.27 | 0.222 | 2.664 |
8 | 50.27 | 0.395 | 4.74 |
10 | 78.54 | 0.617 | 7.404 |
12 | 113.1 | 0.888 | 10.656 |
14 | 153.9 | 1.21 | 14.52 |
16 | 201.1 | 1.58 | 18.96 |
18 | 254.5 | 2.00 | 24 |
20 | 314.2 | 2.47 | 29.64 |
22 | 380.1 | 2.98 | 35.76 |
25 | 490.9 | 3.85 | 46.2 |
28 | 615.8 | 4.83 | 57.96 |
32 | 804.2 | 6.31 | 75.72 |
36 | 1018 | 7.99 | 98.88 |
40 | 1257 | 9.87 | 118.44 |
50 | 1964 | 15.42 | 185.04 |
Usage and Applications of Different Material Hot Rolled Dedormed Steel Rebar
Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..
Packaging & Delivery of Different Material Hot Rolled Dedormed Steel Rebar
Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.
Each bundle weight: 2-3MT, or as required
Delivery Detail: within 45 days after received advanced payment or LC.
Label: to be specified by customer, generally, each bundle has 1-2 labels
Trade terms: FOB, CFR, CIF
Picture of Different Material Hot Rolled Dedormed Steel Rebar
Note:
1. Our products are produced according to national standard (GB), if not, supply according to national standards (GB) or agreement as customer required.
2. Other Grade and Standard Deformed Steel Bar we can supply:
Grade: GR40/GR60, G460B/B500A/B500B/B500C,BST500S
Standard: ASTM, BS, DIN
The Minimum Order Quantity of these products is high, and need to be confirmed.
3. We can not only supply Deformed Steel Bar; if you need anything about building materials, please contact us for further information.
4. Please send us your detail specifications when inquire. We will reply to you as soon as possible. We sincerely hope we can establish a long stable business relationship.
Deformed Steel Bar in testing
- Q: Are there any standards or codes for steel rebars?
- Certainly, steel rebars are subject to standards and codes that are essential for guaranteeing their quality, safety, and compatibility across various construction projects. One of the most widely recognized standards for steel rebars is the ASTM A615/A615M, which is responsible for specifying the requirements of deformed and plain carbon-steel bars used in concrete reinforcement. This standard covers a range of physical and mechanical properties, including chemical composition, yield strength, tensile strength, elongation, and bendability. It also provides guidelines for marking, packaging, and testing of rebars. In addition to the ASTM A615/A615M, there are other relevant standards and codes utilized in different countries and regions. For instance, in Europe, the European Standard EN 10080 outlines the specifications for steel rebars, including dimensions, tolerances, and mechanical properties. Similarly, the British Standard BS 4449 is widely employed in the United Kingdom for steel reinforcement in concrete. These standards and codes play a pivotal role not only in ensuring consistency during the manufacturing and production of steel rebars but also in aiding architects, engineers, and construction professionals in selecting the most suitable rebars for their projects. Compliance with these standards is of utmost importance to ensure the structural integrity, durability, and safety of reinforced concrete structures. It is imperative for stakeholders in the construction industry to acquaint themselves with the pertinent standards and codes for steel rebars and consistently adhere to them. This practice helps to uphold high-quality construction protocols and mitigate the risk of failures or accidents caused by substandard materials.
- Q: What is the role of steel rebars in basement wall construction?
- The role of steel rebars in basement wall construction is to provide reinforcement and strength to the concrete walls. The rebars are embedded within the concrete to help resist tension and prevent cracking, ensuring the stability and durability of the basement walls.
- Q: How do steel rebars prevent the concrete from cracking under tension?
- Steel rebars reinforce concrete and increase its structural integrity, preventing cracking under tension. Concrete has low tensile strength and tends to crack when subjected to tensile forces. However, when steel rebars are embedded in the concrete, they absorb and distribute these forces, acting as reinforcement. Typically made of high-strength steel, the rebars have a much higher tensile strength compared to concrete. As a result, when the concrete is under tension, the rebars bear most of the load, preventing cracking. The rebars act as a framework or skeleton within the concrete, resisting the tensile forces and ensuring its structural stability. Furthermore, the bond between the steel rebar and the concrete also plays a role in preventing cracking under tension. The ribbed or deformed surface of the rebars enhances the bond with the surrounding concrete, creating a strong connection. This bond allows the rebars to transfer the tensile forces to the concrete matrix more effectively, reducing the risk of cracking. By reinforcing the concrete, steel rebars help distribute the tensile forces evenly throughout the structure. This prevents localized stress concentrations and minimizes the chances of cracks forming. Additionally, if cracks do occur, the presence of rebars can help control their propagation by acting as barriers that restrict further spread. In conclusion, steel rebars provide reinforcement, increase the strength of concrete, and prevent cracking under tension. They bear the tensile forces, distribute them evenly, and enhance the bond between the rebar and the concrete. This reinforcement ensures the structural integrity of the concrete and helps prevent cracking.
- Q: Can steel rebars be used in the construction of road bridges or flyovers?
- Steel rebars are indeed applicable in the construction of road bridges or flyovers. Owing to their remarkable strength and durability, they are widely utilized as reinforcement in concrete structures such as bridges and flyovers. By fortifying the concrete, these rebars amplify its structural integrity and load-bearing capacity, making it capable of withstanding heavy traffic loads and enduring the forces encountered by road bridges and flyovers. Furthermore, steel rebars furnish heightened resistance to corrosion, a vital attribute in bridge construction where exposure to environmental factors is prominent. In summary, the utilization of steel rebars guarantees the structural stability, longevity, and safety of road bridges and flyovers.
- Q: How do steel rebars impact the overall constructability and scheduling of concrete projects?
- Steel rebars have a significant impact on the overall constructability and scheduling of concrete projects. They provide structural reinforcement to concrete, increasing its strength and durability. The inclusion of rebars in the concrete design requires careful planning and coordination, as they need to be accurately positioned and supported within the concrete forms. This process can add complexity to the construction process, potentially affecting the project's timeline. However, rebars ultimately enhance the project's constructability by ensuring the structural integrity of the concrete elements, leading to safer and more reliable structures.
- Q: Can steel rebars be recycled after the demolition of a structure?
- Yes, steel rebars can be recycled after the demolition of a structure. Steel is one of the most commonly recycled materials in the world, and rebars are no exception. During the demolition process, rebars are typically removed from the structure and separated from other materials such as concrete. The rebars are then collected and sent to a recycling facility where they are processed and melted down. The melted steel can be used to create new rebars or other steel products, reducing the need for virgin steel production and conserving valuable resources. Recycling rebars not only helps to reduce waste and minimize environmental impact but also contributes to the circular economy by promoting the reuse of materials.
- Q: Are there any specific safety measures to be taken while working with steel rebars?
- Yes, there are specific safety measures to be taken while working with steel rebars. Some important safety precautions include wearing personal protective equipment such as gloves, safety goggles, and steel-toed boots, as well as using proper lifting techniques to prevent strain or back injuries. It is also crucial to maintain a clean and organized work area, secure the rebars properly to prevent them from falling or rolling, and ensure that all workers are trained in safe handling and cutting techniques. Additionally, regular inspections of the rebars for potential defects or damage should be conducted to avoid any accidents or structural issues.
- Q: Can steel rebars be used in corrosive chemical environments?
- When steel rebars are used in corrosive chemical environments, their performance and durability may be compromised. Certain chemicals, especially acidic ones or those containing chlorides, can cause corrosion in steel. This corrosion can lead to structural damage and a decrease in load-bearing capacity. To reduce the risk of corrosion, there are several measures that can be taken. One common approach is to apply a protective coating, such as epoxy or zinc, onto the rebars. This creates a barrier between the steel and the corrosive environment. Another option is to use stainless steel rebars or other corrosion-resistant alloys, which offer better resistance against chemical corrosion. To determine the best course of action, it is essential to consider the specific chemicals present in the environment. Consulting with corrosion engineers and experts is recommended. Regular maintenance and inspections are also necessary to promptly identify any signs of corrosion and take corrective action. This ensures the reinforced concrete structures remain structurally sound and safe.
- Q: Can steel rebars be used in aggressive chemical environments?
- Steel rebars can be used in aggressive chemical environments to some extent. However, their performance may be compromised depending on the severity and nature of the chemicals present. Steel rebars are generally resistant to mild to moderate chemical exposures, such as those found in most construction applications. However, in highly aggressive chemical environments, where exposure to corrosive substances like acids, alkalis, or salts is prolonged and intense, steel rebars may corrode and deteriorate over time. In such cases, alternative materials like stainless steel rebars or epoxy-coated rebars may be more suitable, as they provide enhanced resistance to corrosion in aggressive chemical environments. It is important to consider the specific conditions of the chemical environment and consult with experts or structural engineers to determine the most appropriate rebar material for the given situation. Regular inspections and maintenance should also be conducted to monitor the condition of steel rebars and ensure their longevity in aggressive chemical environments.
- Q: What is the typical lead time for ordering steel rebars?
- The lead time for ordering steel rebars can vary depending on various factors, such as the quantity required, the specific grade and size needed, and the availability and location of the supplier. Typically, if the rebars are readily available and in stock, the lead time can range from a few days to a couple of weeks, assuming the supplier has the necessary inventory and transportation logistics are straightforward. However, if the rebars require special manufacturing or are in high demand, the lead time can be longer. In such cases, it may take several weeks or even months to receive the rebars, especially for large or custom orders that involve special fabrication processes or if the supplier is facing production constraints. To obtain a more accurate estimate of the lead time, it is important to communicate with the supplier and provide them with all the necessary project requirements. It is also advisable to plan ahead and place the order well in advance, particularly for projects with strict deadlines, to ensure the timely arrival of the rebars.
Send your message to us
Different Material Hot Rolled Dedormed Steel Rebar
- Loading Port:
- China main port
- Payment Terms:
- TT or LC
- Min Order Qty:
- 50 m.t.
- Supply Capability:
- 200000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords