Reinforced Rebar Steel for Construction building bridge road
- Loading Port:
- Shanghai
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 19000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Rebar (short for reinforcing bar), also known as reinforcing steel, reinforcement steel, is a steel bar or mesh of steel wires
used as a tension device in reinforced concrete and reinforced masonry structures to strengthen and hold the concrete in tension.
Rebar's surface is often patterned to form a better bond with the concrete.
Features
1、Pure steel quality, stable chemical contents, small tolerance.
2、Constant Quality, good drawing performance.
3、High dimension accuracy degree, accuracy degree of Level C up to 80%, smooth surface, less scale, easy to be pickled.
4、Automatic bundling with 4 lines by Machine in tidy and good looks
5、Big high quality percentage, small coil percentage, and heavy coil weight for Hard Coil.
6、High sorbitizing percentage.
Product Description :
Chemical composition (%): | Steel | C | Si | Mn | P | S | Ceq | ||||
HRB335 |
0.25 |
0.80 |
1.60 |
0.045 |
0.045 | 0.52 | |||||
HRB400 | 0.54 | ||||||||||
HRB500 | 0.55 | ||||||||||
Mechanical properties | Steel | Rel/ MPa | Rm/ MPa | A/ % | Agt/ % | ||||||
≥ | |||||||||||
HRB335 | 335 | 455 | 17 |
7.5 | |||||||
HRB400 | 400 | 540 | 16 | ||||||||
HRB500 | 500 | 630 | 15 | ||||||||
Package: | Standard export packing or as customer's request | ||||||||||
Application: | Construction, building, bridge, road. ect | ||||||||||
Payment terms | 1).100% irrevocable L/C at sight. | ||||||||||
Delivery time | 15-30 days after receipt of L/C or deposit by T/T | ||||||||||
Packing:
In bundles, each bundle weight 3.5 tons. Load by container or by bulk verssel.
Our service
(1) We cooperate with famous factories with advanced equipment and well trained workers.
(2) We can provide factory price with trading company service.
(3) We continuously work on the improvement of our processes, guaranteeing consistently high standards
of quality to keep none compensation.
(4) We guarantee 24 hours response and 48 hours solution providing service.
(5) We accept small order quantity before formal cooperation.
(6) We deliver the agreed quality at the agreed time, reacting to changes in customer wishes in a flexible way.
(7) Due to our volume and selling power, we have excellent freight rates with shipping lines.
(8) We strive to always be fair and honest in our dealings with customers.
(9) We strive to work together with customers to achieve much more than we can achieve alone.
(10) Through our passion and commitment we aim to be a market leader in all our key markets. To maintain
our position as market leader we must continue to add value in all that we do.
FAQ:
1.Q: What's your MOQ(minimum order quantity)?
A: One full container, mixed acceptable .
2. Q: What's your packing methods?
A: Packed in bundle or bulk ..
3. Q: How can I buy CNBM products in my country?
A:Please send us an inquiry or email ,we will reply to you if there is distributor in your country
4. Q: Can we visit your factory?
A: Warmly welcome. Once we have your schedule, we will arrange the professional sales team to follow up your case.
5. Q: How long does it take to get the product if i place an order?
A:With the process of your requirements,we will pack and deliver in 3-7 days. If it is by sea shipment,it will take 15-45 days depending on different locations
- Q: How do steel rebars improve the strength and durability of concrete?
- Steel rebars improve the strength and durability of concrete in several ways. Firstly, rebars provide reinforcement to the concrete structure, increasing its tensile strength. Concrete is excellent at withstanding compression forces, but it is relatively weak when it comes to tension. By embedding steel rebars within the concrete, the tensile strength of the structure is significantly enhanced. This means that the concrete can resist bending, cracking, and collapsing under heavy loads or external forces. Secondly, steel rebars prevent cracking and shrinkage in the concrete. Concrete tends to shrink as it dries and cures, leading to the development of cracks. However, rebars help to control and restrict this shrinkage by providing additional support and structural integrity. This helps to minimize the occurrence of cracks and ensures that the concrete remains strong and durable over time. Furthermore, steel rebars improve the overall structural stability of the concrete. When concrete is subjected to dynamic loads or seismic activity, it can experience significant deformation or even failure. The presence of rebars helps to distribute the load more evenly throughout the concrete structure, reducing the risk of localized damage or collapse. This enhances the overall stability and safety of the concrete construction. Lastly, steel rebars increase the longevity and durability of concrete structures. The steel used in rebars is highly resistant to corrosion, which is a common issue in concrete exposed to harsh environmental conditions or moisture. By providing a protective layer around the steel, known as passivation, rebars prevent corrosion and maintain the structural integrity of the concrete for an extended period. This ensures that the concrete remains strong, durable, and resistant to degradation over its lifespan. In summary, steel rebars play a crucial role in improving the strength and durability of concrete. They enhance the tensile strength, prevent cracking and shrinkage, enhance structural stability, and increase the longevity of the concrete structure. With the addition of steel rebars, concrete becomes a reliable and long-lasting construction material capable of withstanding various loads and environmental conditions.
- Q: How do steel rebars improve the ductility of concrete?
- Steel rebars improve the ductility of concrete in several ways. Firstly, the presence of rebars helps to distribute and dissipate stress throughout the concrete structure, preventing the concentration of loads in specific areas. This even distribution of stress helps to prevent the formation of cracks or fractures, thus enhancing the overall ductility of the concrete. Secondly, when the concrete undergoes tension or bending forces, the rebars act as reinforcement to resist these forces. The steel rebars have high tensile strength compared to concrete, which is weak in tension. This reinforcement allows the concrete to withstand higher tensile stresses without breaking, increasing its ductility. Additionally, the bond between the steel rebars and the concrete matrix plays a crucial role in improving ductility. The rough surface of the rebars provides better adhesion with the surrounding concrete, increasing the transfer of stresses between the two materials. This bond prevents the rebars from slipping out of the concrete during deformation, ensuring the structural integrity and enhancing the ductility of the composite material. Moreover, the presence of steel rebars also contributes to the post-cracking behavior of concrete. When cracks develop under high loads, the rebars help to hold the concrete together and prevent further propagation of the cracks. This post-cracking behavior allows the concrete to maintain its load-bearing capacity even in a damaged state, thereby improving its overall ductility. In summary, steel rebars improve the ductility of concrete by distributing stress, resisting tension and bending forces, enhancing the bond between concrete and rebars, and providing post-cracking reinforcement. These combined effects result in a more flexible and durable concrete structure that can withstand deformation without catastrophic failure.
- Q: Are there any health and safety concerns related to steel rebars?
- Yes, there are several health and safety concerns related to steel rebars. Firstly, handling and lifting steel rebars can pose risks of musculoskeletal injuries such as strains, sprains, and back injuries. These rebars are heavy and often require manual handling or the use of heavy machinery, which can increase the risk of accidents and injuries. Secondly, steel rebars are often coated with chemicals to prevent corrosion. These coatings can contain hazardous substances such as toxic metals or volatile organic compounds (VOCs). Exposure to these chemicals through inhaling fumes or direct contact with the skin can lead to health issues, including respiratory problems, skin irritation, and chemical burns. Furthermore, steel rebars are commonly used in construction sites, which can be hazardous environments. Workers may face risks of falling rebars, tripping over them, or being struck by them. Additionally, improper installation or positioning of steel rebars can compromise the structural integrity of the construction, potentially leading to accidents or collapses. To mitigate these health and safety concerns, it is important to provide appropriate training and personal protective equipment (PPE) to workers handling steel rebars. Employers should also enforce proper lifting techniques and safe work practices to prevent musculoskeletal injuries. Adequate ventilation systems and the use of respiratory protection can help in reducing exposure to hazardous chemicals. Lastly, regular inspections and adherence to construction regulations can ensure the proper placement and installation of steel rebars, minimizing the risk of accidents and structural failures.
- Q: How do steel rebars affect the weight of a concrete structure?
- The weight of a concrete structure can be significantly impacted by steel rebars. These rebars, typically made of steel, reinforce the concrete and enhance its strength and durability. They are primarily placed in areas of concrete under tension, such as the bottom of beams or the middle of slabs. While the presence of steel rebars does add to the overall weight of the structure, it also allows for the use of less concrete. By adding reinforcement, the concrete can withstand higher loads and stresses, reducing the need for excessive amounts of concrete. As a result, the structure becomes lighter. Furthermore, steel rebars enable the design and construction of more slender and efficient structures. The increased strength provided by the rebars allows for longer spans and thinner sections, which reduces the dead load. This not only decreases the weight of the structure but also offers more flexibility in architectural and structural design. In addition, the weight of a concrete structure is a critical consideration, particularly in high-rise buildings or long-span structures. Excessive weight can strain the foundation and increase construction costs. By utilizing steel rebars, the weight of the concrete structure can be optimized without compromising its structural integrity. To sum up, steel rebars play a crucial role in reducing the weight of concrete structures. They enable the use of less concrete while maintaining the required strength, resulting in lighter and more efficient structures. The use of rebars also provides flexibility in design and reduces construction costs associated with excessive weight.
- Q: Can steel rebars be used in structures subjected to chemical exposure?
- Steel rebars can be used in structures subjected to chemical exposure, but their suitability depends on the specific type and concentration of chemicals involved. In general, stainless steel rebars or epoxy-coated rebars are preferred for such applications as they provide better resistance to corrosion and chemical attack compared to plain carbon steel rebars. However, it is important to conduct a thorough evaluation of the chemical environment and consult with experts to determine the most appropriate rebar material for the specific structure and its intended use.
- Q: What is the minimum ductility requirement for steel rebars?
- The minimum ductility requirement for steel rebars is typically set at 14.5%.
- Q: What is the difference between epoxy-coated and galvanized steel rebars?
- Epoxy-coated steel rebars are coated with a layer of epoxy resin, which provides corrosion resistance and helps prevent the rebar from coming into contact with moisture and chemicals. On the other hand, galvanized steel rebars are coated with a layer of zinc, which acts as a sacrificial anode and protects the rebar from corrosion by forming a protective barrier. In summary, while both coatings provide corrosion resistance, epoxy-coated rebars primarily rely on the epoxy layer, whereas galvanized rebars rely on the sacrificial anode effect of the zinc coating.
- Q: What is the relationship between the price and the hot coil steel prices?
- This is the current situation in the steel market. I'll make a fool of myself:I. energy conservation and emission reduction. The billet supply shortage in Hebei, the steel thread reduced supply, local area and even out of stock.Two, demand. Demand for long products now than flat material, by volume, resulting in coil ascribed weakness.Three, futures. Market confidence is not the same, the thread futures are now definitely heat up the volume of fast. Reflected to the spot, the thread rose fastFour, steel mills. Steel mills under the relationship between cost and supply, thread factory prices have been rising steadily; not hot.Five, inventory. Integrated one or two and four, thread destocking faster.Six, traders mentality. Why do you ask such a question, you are not what the firm confidence, also want to put prices up.
- Q: Are steel rebars resistant to UV radiation?
- No, steel rebars are not inherently resistant to UV radiation and can corrode when exposed to prolonged sunlight.
- Q: Can steel rebars be used in structures with high electrical conductivity requirements?
- Steel rebars cannot be utilized in structures that demand high electrical conductivity. Although steel is a remarkably conductive substance, its implementation as reinforcement in concrete structures involves encasing it within the concrete, thus eliminating any direct electrical pathway. Consequently, steel rebars do not contribute to the overall electrical conductivity of the structure. In cases where high electrical conductivity is necessary, it is advisable to explore alternative materials like copper or aluminum. These materials possess significantly higher electrical conductivity characteristics, enabling them to fulfil the requirements of structures with elevated electrical conductivity demands.
Send your message to us
Reinforced Rebar Steel for Construction building bridge road
- Loading Port:
- Shanghai
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 19000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords