• Steel Reinforcing Rebars for Construction Concrete System 1
  • Steel Reinforcing Rebars for Construction Concrete System 2
  • Steel Reinforcing Rebars for Construction Concrete System 3
Steel Reinforcing Rebars for Construction Concrete

Steel Reinforcing Rebars for Construction Concrete

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering Steel Reinforcing Rebars for Construction Concrete at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to African, South American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Steel Reinforcing Rebars for Construction Concrete are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Steel Reinforcing Rebars for Construction Concrete are durable, strong, and wide variety of sizes.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: HRB335,HRB400,HRB500

Certificates: ISO, SGS, BV, CIQ

Length: 6m – 12m, as per customer request

Packaging: Export packing, nude packing, bundled

Deformed Steel Bar

Diameter

(MM)

Cross

Sectional

Area

(MM2)

Theorectical

Weight

(KG/M)

6

28.27

0.222

8

50.27

0.395

10

78.54

0.617

12

113.1

0.888

14

153.9

1.21

16

201.1

1.58

18

254.5

2

20

314.2

2.47

22

380.1

2.98

25

490.9

3.85

28

615.8

4.83

32

804.2

6.31

36

1018

7.99

40

1257

9.87

Grade

Technical data of the original chemical composition (%)

C

Mn

Si

S

P

B

HRB335

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

>0.0008

Physics capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation (%)

≥335

≥490

≥16

 

FAQ:

Q1: what is the difference between actual weight and theoretical weight?

A1: All the section steel has two weights: actual weight and theoretical weight. Actual weight is the weighing out when the product delivered from the mill. Theoretical weight is calculated by pieces.  The invoice can be based on each of them as your request.

Q2: How many tons of steel products could be loaded in containers?

A2: Usually the steel products are delivered by bulk vessel because of the large quantity and the freight. However, there are no bulk vessel enter some seaports so that we have to deliver the cargo by containers. The 6m steel product can be loaded in 20FT container, but the quantity is changed according to the size, usually from 18tons to 25tons.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will arrange production. The normal sizes with the normal grade can be produced within one month. The specific shipping date is dependent upon international and government factors, the delivery to international main port about 45-60days.

 

Images:

Steel Reinforcing Rebars for Construction Concrete

Steel Reinforcing Rebars for Construction Concrete

 

Q:What is the process of bending steel rebars into shapes other than straight bars?
To create shapes other than straight bars, steel rebars undergo a series of steps and techniques. Initially, measurement and marking are carried out to identify the desired bending points and angles. A measuring tape, square, and marker are typically utilized for this purpose. Following this, the rebars are fastened within a bending machine or a manual bending tool. The bending machine comprises a bending head and a bending table as its primary components. The rebars are positioned on the bending table, while the bending head is adjusted to the desired angle and position. Once the rebars are securely placed, the bending process commences. Manual tools like a rebar bender or cutter can be utilized for smaller rebars. These tools enable the worker to exert force and bend the steel rebar into the desired shape. For larger rebars or intricate shapes, a hydraulic bending machine is often employed. This machine employs hydraulic pressure to bend the rebars, allowing for enhanced precision and control. The operator can modify the bend's angle and radius to achieve the desired shape. Throughout the bending process, it is crucial to prevent overstressing or damaging the rebars. Excessive bending can weaken the rebars and jeopardize their structural integrity. Hence, it is essential to adhere to the bending specifications and guidelines provided by engineers and construction standards. Once the rebars have been bent into the desired shape, they are typically inspected for any defects or imperfections. This inspection ensures that the rebars conform to the required standards and can be safely utilized in construction projects. In conclusion, the process of bending steel rebars into shapes other than straight bars involves measurement and marking, securing the rebars in a bending machine, applying force or hydraulic pressure to bend the rebars, and inspecting the final product for quality assurance. This process necessitates precision, skill, and adherence to safety guidelines to ensure the rebars can withstand the intended structural loads.
Q:What is the typical weight per meter of a steel rebar?
The typical weight per meter of a steel rebar can vary depending on its size and grade. However, as a general guideline, a standard mild steel rebar with a diameter of 10 millimeters (mm) usually weighs around 0.616 kilograms per meter (kg/m). For larger sizes, such as a 20 mm rebar, the weight per meter can increase to approximately 2.47 kg/m. It is important to note that these values are approximate and may vary slightly depending on the specific manufacturing standards and regional regulations.
Q:What are the guidelines for proper placement of steel rebars in concrete structures?
The proper placement of steel rebars in concrete structures is essential to ensure the structural integrity and durability of the construction. Here are some guidelines to follow for the correct placement of rebars: 1. Design Considerations: The first step is to refer to the structural drawings and specifications provided by the engineer. These documents will outline the required rebar sizes, spacing, and any specific details or arrangements needed for the project. 2. Rebar Size and Spacing: The size and spacing of rebars are determined based on the structural requirements and load-bearing capacity of the concrete structure. The diameter and spacing of the rebars should adhere to the design specifications to provide adequate reinforcement. 3. Concrete Cover: The concrete cover refers to the distance between the outer surface of the rebar and the edge of the concrete. This cover protects the rebars from corrosion and provides fire resistance. It is crucial to maintain the specified concrete cover to ensure the longevity of the rebars. 4. Lap Length: In cases where rebars need to be spliced or joined together, a lap length is specified. The lap length ensures sufficient overlap for the transfer of stress between the rebars and prevents any weak points in the structure. 5. Alignment and Positioning: Rebars should be properly aligned and positioned within the concrete formwork. They should be placed in the center of the concrete section to effectively resist tension and compression forces. The use of spacers or chairs can help maintain the desired rebar position during the pouring and setting of the concrete. 6. Clearances and Edge Distance: Adequate clearances must be maintained between rebars to allow for proper concrete flow during casting. Similarly, minimum edge distances should be maintained to prevent rebar corrosion and ensure proper concrete cover. 7. Tying and Fixing: Rebars should be securely tied and fixed at intersections to prevent displacement during concrete placement. Properly tying the rebars using wire or approved connectors helps maintain their position and ensures the structural integrity of the concrete. 8. Inspection and Quality Control: Regular inspections should be conducted during the concrete pouring process to verify that the rebars are placed correctly and according to the design specifications. Any deviations or discrepancies should be addressed promptly to avoid compromising the structural integrity of the concrete structure. By following these guidelines, construction professionals can ensure the proper placement of steel rebars in concrete structures, resulting in safe and durable constructions that can withstand the design loads and provide long-term structural stability.
Q:How do steel rebars contribute to the ductility of reinforced concrete structures?
Steel rebars contribute to the ductility of reinforced concrete structures by providing reinforcement and increasing tensile strength. The rebars act as a skeleton within the concrete, absorbing and distributing external forces such as tension and compression. This reinforcement prevents the concrete from cracking or failing under stress, allowing the structure to withstand greater loads and deform without collapsing, thus enhancing its overall ductility.
Q:How do steel rebars affect the thermal properties of a structure?
Steel rebars can increase the thermal conductivity of a structure, making it more prone to heat transfer.
Q:Why does the steel thread have longitudinal ribs?
The effect of the longitudinal ribs is indirect, which improves the mechanical properties of the transverse ribs and indirectly enhances the bond with the concrete.
Q:Can steel rebars be used in parking garage construction?
Yes, steel rebars can indeed be used in parking garage construction. Steel rebars are commonly used as reinforcement in concrete structures, including parking garages, to enhance their strength and durability. The rebars help to reinforce the concrete and prevent cracking or collapsing under heavy loads, making them an essential component in parking garage construction.
Q:How do steel rebars contribute to the overall stability of a structure?
Steel rebars contribute to the overall stability of a structure by enhancing its strength and durability. These reinforcing bars are embedded within concrete to provide tensile strength, which is necessary to resist bending or cracking forces. They help distribute the applied loads evenly throughout the structure, preventing the formation of cracks and ensuring structural integrity. Additionally, rebars help prevent the structure from collapsing under extreme conditions, such as earthquakes or heavy winds, by increasing its ability to withstand these external forces.
Q:Can steel rebars be used in nuclear power plant construction?
Yes, steel rebars can be used in nuclear power plant construction. Steel rebars are commonly used as reinforcement in concrete structures, including those found in nuclear power plants. They provide strength and help enhance the structural integrity of the buildings and components within the plant. However, specific regulations and standards need to be followed to ensure the rebars meet the necessary requirements for nuclear safety.
Q:Can steel rebars be painted or coated for aesthetic purposes?
Yes, steel rebars can be painted or coated for aesthetic purposes. Painting or coating steel rebars can help improve their appearance and blend them with the surrounding structures or environment. The paint or coating can be chosen to match the desired color or style, allowing the rebars to be seamlessly integrated into the overall design. Additionally, painting or coating the rebars can also provide a layer of protection against corrosion and extend their lifespan. However, it is important to note that the paint or coating used should be specifically designed for steel and capable of adhering well to the surface, ensuring durability and longevity.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords