• PV35-5K Low Frequency DC to AC Solar Power Inverter 12KW - Solar Inverter Manufacturers in USA System 1
  • PV35-5K Low Frequency DC to AC Solar Power Inverter 12KW - Solar Inverter Manufacturers in USA System 2
PV35-5K Low Frequency DC to AC Solar Power Inverter 12KW - Solar Inverter Manufacturers in USA

PV35-5K Low Frequency DC to AC Solar Power Inverter 12KW - Solar Inverter Manufacturers in USA

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
1000 watt
Supply Capability:
100000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description

 

What is Solar inverter? 

Solar pv inverters is an electronic system that operates the photovoltaic(PV) modules in a manner that allows the modules to produce all the power they are capable of. The solar mate charge controller is a microprocessor-based system designed to implement the MPPT. It can increase charge current up to 30% or more compared to traditional charge controllers.

 

Features

 

·          Power range 1KW - 12KW

·          Inbuilt pure copper transformer 

·          Powerful charge rate up to 100Amp

·         MPPT solar charge controller 45A 60A (120A Option)

·         PV input:145V max 

·         12V/24V/36V/48V auto work 

·         MPPT efficiency>99% , Peak conversion efficiency>98% 

·          DSP processors architecture ensure high speed and performance 

·         Four-stages charging mode 

·         Protection: PV array short circuit, PV reverse polarity, Battery reverse polarity, Over charging, Output short circuit

·         High efficency design & "Power Saving Mode" to coverse energy 

 

Specification

 

MODEL

PV35-1K

PV35-2K

PV35-3K

PV35-4K


Default Battery System Voltage

12VDC

24VDC

12VDC

24VDC

12VDC

24VDC

12VDC

24VDC


INVERTER OUTPUT

Rated Power

1KW

2KW

3000VA/2.4KW

4000VA/3.2KW


Surge Rating (20ms)

3KW

6KW

9KW

12KW


Capable Of Starting Electric Motor

1HP

1HP

1.5HP

2HP


Waveform

Pure sine wave/ same as input (bypass mode)


Nominal Output Voltage RMS

100V/110V/120VAC 220V/230V/240VAC(+/-10% RMS)


Output Frequency

50Hz/60Hz +/-0.3 Hz


Inverter Efficiency(Peak)

>88%


Line Mode Efficiency

>95%


Power Factor

0.8


Typical Transfer Time

10ms(max)


AC INPUT

Voltage

230VAC

Selectable Voltage Range

96~132VAC/155~280VAC(For Personal Computers)

Frequency Range

50Hz/60Hz (Auto sensing) 40-80Hz

BATTERY

Minimum Start Voltage

10.0VDC /10.5VDC for12VDC mode (*2 for 24VDC, *4 for   48VDC)

Low Battery Alarm

10.5VDC+/-0.3V for12VDC mode (*2 for 24VDC, *4 for   48VDC)

Low Battery Cutoff

10.0VDC+/-0.3V for12VDC mode (*2 for 24VDC, *4 for   48VDC)

High Voltage Alarm

16.0VDC+/-0.3V for12VDC mode (*2 for 24VDC, *4 for   48VDC)

High Battery Voltage Recover

15.5VDC+/-0.3V for12VDC mode (*2 for 24VDC, *4 for   48VDC)

Idle Consumption-Search Mode

<25W when power saver on

CHARGER

Output Voltage

Depends on battery type

Charger AC Input Breaker Rating

10A

30A

30A

30A

Overcharge Protection S.D.

15.7VDC for 12VDC mode (*2 for 24VDC, *4 for 48VDC)

Maximum Charge Current

45A

25A

70A         35A

90A        50A

65A      40A

BTS

Continuous Output Power

Yes Variances in charging voltage & S.D. voltage   base on the battery temperature

BYPASS & PROTECTION

Input Voltage Waveform

Sine wave (grid or generator)

Nominal Input Frequency

50Hz or 60Hz

Overload Protection (SMPS Load)

Circuit breaker

Output Short Circuit Protection

Circuit breaker

Bypass Breaker Rating

10A

15A

20A

40A

Max Bypass Current

30Amp

SOLAR CHARGER

Maximum PV Charge Current

45A

DC Voltage

12V/24V atuo work

Maximum PV Array Power

600W

1200W

600W

1200W

600W

1200W

600W

3200W

MPPT Range @ Operating Voltage(VDC)

16-100VDC for 12V mode,32-100V for 24V mode

Maximum PV Array Open Circuit Voltage

100VDC

147VDC

Maximum Efficiency

>98%

Standby Power Consumption

<2w< span="">

MECHANICAL SPECIFICATIONS

Mounting

Wall mount

Dimensions (W*H*D)

493*311*215mm

Net Weight (Solar CHG) kg

23.5

24.5

25.5

29.5

Shipping Dimensions(W*H*D)

580*400*325mm

Shipping Weight (Solar CHG) kg

25.5

26.5

27.5

31.5

OTHER

Operation Temperature Range

0°C to 40°C

Storage Temperature

-15°C to 60°C

Audible Noise

60dB MAX

Display

LED+LCD

Loading(20GP/40GP/40HQ)

150pcs/300pcs/350pcs





















 


Images

 

PV35-5K Low Frequency DC to AC Solar Power Inverter 12KW

PV35-5K Low Frequency DC to AC Solar Power Inverter 12KW




Packaging & Shipping

What is the packing?

1.Package: Carton Box for packaging, or Wooden Box advised  for Samples to protect in transportations. Package designed by Clients is welcomed.

2.Shipping: DHL,FEDEX,UPS,EMS,AirWay and By Sea. 

3.Payment: T/T( telegraphic transfer (T/T) and Western Union 

4.Welcome to your Sample Order to test First.

   

FAQ

 

Q1: How to choose a right inverter?

A1:Tell us your demand, then our sales will recommend a suitable inverter to you.

Q2: What's the different between inverter and solar inverter?

A2:  Inverter is only accept AC input, but solar inverter not only accept AC input but also can connect with solar panel to accept PV input, it more save power.  

Q3: How about the delivery time?

A3:  7 days for sample; 25 days for bulk order.

 

 



Q: Can a solar inverter be used with solar-powered greenhouse systems?
Yes, a solar inverter can be used with solar-powered greenhouse systems. A solar inverter is responsible for converting the DC power produced by solar panels into AC power that can be used to run electrical devices. In the context of a solar-powered greenhouse system, the solar inverter would be essential for converting the solar energy collected by the panels into usable electricity to power various components such as fans, pumps, lighting, and climate control systems within the greenhouse.
Q: Can a solar inverter be used with building-integrated photovoltaic systems?
Yes, a solar inverter can be used with building-integrated photovoltaic systems. Building-integrated photovoltaic systems are designed to seamlessly integrate solar panels into the building's architecture, and a solar inverter is an essential component that converts the DC power generated by the solar panels into AC power for use in the building's electrical system.
Q: How does a solar inverter handle voltage unbalance in the grid?
A solar inverter handles voltage unbalance in the grid by employing its control algorithms to monitor and regulate the output voltage. When the solar inverter detects an unbalanced grid voltage, it adjusts the output voltage accordingly to maintain a balanced supply. This is typically achieved by injecting reactive power or adjusting the phase angle of the output voltage to synchronize it with the grid. By actively managing voltage unbalance, a solar inverter ensures stable and reliable power conversion in the presence of grid voltage fluctuations.
Q: What is the role of a solar inverter in a residential system?
The role of a solar inverter in a residential system is to convert the direct current (DC) electricity produced by solar panels into alternating current (AC) electricity that can be used to power household appliances and be fed back into the grid if there is excess energy. Additionally, the inverter ensures the efficiency and safety of the system by monitoring and regulating the flow of electricity.
Q: Can a solar inverter be used with a solar-powered agricultural irrigation system?
Yes, a solar inverter can be used with a solar-powered agricultural irrigation system. The solar inverter is responsible for converting the direct current (DC) produced by the solar panels into alternating current (AC) that can be used to power the irrigation system. This allows for efficient utilization of solar energy to operate the irrigation system, reducing reliance on traditional power sources and promoting sustainable agriculture practices.
Q: How does a microinverter differ from a string inverter?
A microinverter differs from a string inverter in that it is a small, individual inverter that is connected to each solar panel in a system, whereas a string inverter is a larger inverter that is connected to multiple panels in a series (string). This means that each panel with a microinverter can operate independently, optimizing the power output of each panel, while a string inverter operates based on the performance of the entire string of panels. Microinverters also allow for easier monitoring and maintenance as the performance of each panel can be individually tracked, whereas with a string inverter, any issues affecting one panel can impact the output of the entire string.
Q: Are solar inverters weather-resistant?
Yes, solar inverters are typically weather-resistant. They are designed to withstand different weather conditions such as rain, snow, and extreme temperatures. However, it is still important to consider proper installation and maintenance to ensure the longevity and performance of the inverter in varying weather conditions.
Q: What are the potential risks of overcharging a battery connected to a solar inverter?
Overcharging a battery connected to a solar inverter can lead to several potential risks. Firstly, it can cause excessive heat buildup in the battery, which can lead to reduced battery life and even damage the internal components. Secondly, overcharging can cause electrolyte leakage or gas buildup within the battery, increasing the risk of explosion or fire hazard. Additionally, overcharging can result in the release of toxic gases, such as hydrogen, which can be harmful if not properly ventilated. Finally, overcharging can also have an adverse effect on the overall efficiency of the solar system, as excess energy is wasted during the charging process.
Q: Can a solar inverter be used with a portable solar panel system?
Yes, a solar inverter can be used with a portable solar panel system. A solar inverter is responsible for converting the direct current (DC) produced by the solar panels into usable alternating current (AC) electricity. Whether it is a portable or stationary solar panel system, a solar inverter is necessary to convert the DC power into AC power that can be used to power various devices and appliances.
Q: How do you maintain a solar inverter?
To maintain a solar inverter, regular inspections and cleaning are essential. It is crucial to check for any signs of damage or loose connections, and make sure the inverter is properly ventilated to prevent overheating. Additionally, keeping the surrounding area clean and free from any debris or obstructions can help optimize its performance. It is recommended to follow the manufacturer's guidelines and consult with a professional for any specific maintenance requirements.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords