• 24 Volt Solar Inverter PV35-6K Low Frequency DC to AC Solar Power Inverter 12KW System 1
  • 24 Volt Solar Inverter PV35-6K Low Frequency DC to AC Solar Power Inverter 12KW System 2
24 Volt Solar Inverter PV35-6K Low Frequency DC to AC Solar Power Inverter 12KW

24 Volt Solar Inverter PV35-6K Low Frequency DC to AC Solar Power Inverter 12KW

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
10000 watt
Supply Capability:
100000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description

 

What is Solar inverter? 

Solar pv inverters is an electronic system that operates the photovoltaic(PV) modules in a manner that allows the modules to produce all the power they are capable of. The solar mate charge controller is a microprocessor-based system designed to implement the MPPT. It can increase charge current up to 30% or more compared to traditional charge controllers.

 

Features

 

·          Power range 1KW - 12KW

·          Inbuilt pure copper transformer 

·          Powerful charge rate up to 100Amp

·         MPPT solar charge controller 45A 60A (120A Option)

·         PV input:145V max 

·         12V/24V/36V/48V auto work 

·         MPPT efficiency>99% , Peak conversion efficiency>98% 

·          DSP processors architecture ensure high speed and performance 

·         Four-stages charging mode 

·         Protection: PV array short circuit, PV reverse polarity, Battery reverse polarity, Over charging, Output short circuit

·         High efficency design & "Power Saving Mode" to coverse energy 

 

Specification

 

MODEL

PV35-1K

PV35-2K

PV35-3K

PV35-4K


Default Battery System Voltage

12VDC

24VDC

12VDC

24VDC

12VDC

24VDC

12VDC

24VDC


INVERTER OUTPUT

Rated Power

1KW

2KW

3000VA/2.4KW

4000VA/3.2KW


Surge Rating (20ms)

3KW

6KW

9KW

12KW


Capable Of Starting Electric Motor

1HP

1HP

1.5HP

2HP


Waveform

Pure sine wave/ same as input (bypass mode)


Nominal Output Voltage RMS

100V/110V/120VAC 220V/230V/240VAC(+/-10% RMS)


Output Frequency

50Hz/60Hz +/-0.3 Hz


Inverter Efficiency(Peak)

>88%


Line Mode Efficiency

>95%


Power Factor

0.8


Typical Transfer Time

10ms(max)


AC INPUT

Voltage

230VAC

Selectable Voltage Range

96~132VAC/155~280VAC(For Personal Computers)

Frequency Range

50Hz/60Hz (Auto sensing) 40-80Hz

BATTERY

Minimum Start Voltage

10.0VDC /10.5VDC for12VDC mode (*2 for 24VDC, *4 for   48VDC)

Low Battery Alarm

10.5VDC+/-0.3V for12VDC mode (*2 for 24VDC, *4 for   48VDC)

Low Battery Cutoff

10.0VDC+/-0.3V for12VDC mode (*2 for 24VDC, *4 for   48VDC)

High Voltage Alarm

16.0VDC+/-0.3V for12VDC mode (*2 for 24VDC, *4 for   48VDC)

High Battery Voltage Recover

15.5VDC+/-0.3V for12VDC mode (*2 for 24VDC, *4 for   48VDC)

Idle Consumption-Search Mode

<25W when power saver on

CHARGER

Output Voltage

Depends on battery type

Charger AC Input Breaker Rating

10A

30A

30A

30A

Overcharge Protection S.D.

15.7VDC for 12VDC mode (*2 for 24VDC, *4 for 48VDC)

Maximum Charge Current

45A

25A

70A         35A

90A        50A

65A      40A

BTS

Continuous Output Power

Yes Variances in charging voltage & S.D. voltage   base on the battery temperature

BYPASS & PROTECTION

Input Voltage Waveform

Sine wave (grid or generator)

Nominal Input Frequency

50Hz or 60Hz

Overload Protection (SMPS Load)

Circuit breaker

Output Short Circuit Protection

Circuit breaker

Bypass Breaker Rating

10A

15A

20A

40A

Max Bypass Current

30Amp

SOLAR CHARGER

Maximum PV Charge Current

45A

DC Voltage

12V/24V atuo work

Maximum PV Array Power

600W

1200W

600W

1200W

600W

1200W

600W

3200W

MPPT Range @ Operating Voltage(VDC)

16-100VDC for 12V mode,32-100V for 24V mode

Maximum PV Array Open Circuit Voltage

100VDC

147VDC

Maximum Efficiency

>98%

Standby Power Consumption

<2w< span="">

MECHANICAL SPECIFICATIONS

Mounting

Wall mount

Dimensions (W*H*D)

493*311*215mm

Net Weight (Solar CHG) kg

23.5

24.5

25.5

29.5

Shipping Dimensions(W*H*D)

580*400*325mm

Shipping Weight (Solar CHG) kg

25.5

26.5

27.5

31.5

OTHER

Operation Temperature Range

0°C to 40°C

Storage Temperature

-15°C to 60°C

Audible Noise

60dB MAX

Display

LED+LCD

Loading(20GP/40GP/40HQ)

150pcs/300pcs/350pcs





















 


Images

 

PV35-6K Low Frequency DC to AC Solar Power Inverter 12KW

PV35-6K Low Frequency DC to AC Solar Power Inverter 12KW




Packaging & Shipping

What is the packing?

1.Package: Carton Box for packaging, or Wooden Box advised  for Samples to protect in transportations. Package designed by Clients is welcomed.

2.Shipping: DHL,FEDEX,UPS,EMS,AirWay and By Sea. 

3.Payment: T/T( telegraphic transfer (T/T) and Western Union 

4.Welcome to your Sample Order to test First.

   

FAQ

 

Q1: How to choose a right inverter?

A1:Tell us your demand, then our sales will recommend a suitable inverter to you.

Q2: What's the different between inverter and solar inverter?

A2:  Inverter is only accept AC input, but solar inverter not only accept AC input but also can connect with solar panel to accept PV input, it more save power.  

Q3: How about the delivery time?

A3:  7 days for sample; 25 days for bulk order.

 

 



Q: Can a solar inverter be used with different types of backup power configurations?
Yes, a solar inverter can be used with different types of backup power configurations. Solar inverters are designed to convert the direct current (DC) power generated by solar panels into alternating current (AC) power that can be used to power homes or businesses. They can be integrated with various backup power sources such as battery banks, diesel generators, or grid-connected systems. This flexibility allows for uninterrupted power supply during periods when solar energy is not available, ensuring continuous electricity supply.
Q: Can a solar inverter be controlled remotely?
Indeed, remote control of a solar inverter is possible. Numerous contemporary solar inverters are furnished with integrated communication capabilities like Wi-Fi or Ethernet connectivity, granting the ability to monitor and control them from a distance. Users can access and manage their solar inverters from any location with an internet connection through a web-based interface or a dedicated mobile app. The remote control features typically encompass performance monitoring, settings adjustment, and issue troubleshooting. This remote control functionality provides solar system owners with convenience and flexibility, empowering them to maximize energy production and efficiently manage their systems.
Q: How does a solar inverter handle grid voltage variations?
A solar inverter handles grid voltage variations by constantly monitoring the grid voltage and adjusting its output accordingly. It uses complex algorithms to regulate the voltage and frequency of the electricity it feeds into the grid, ensuring it matches the varying grid voltage. This allows the solar inverter to maintain a stable and consistent power output, regardless of any fluctuations in the grid voltage.
Q: What is the role of a frequency regulation feature in a solar inverter?
The role of a frequency regulation feature in a solar inverter is to ensure that the power output from the solar panels matches the grid's frequency and voltage requirements. It helps maintain a stable and consistent frequency, allowing for seamless integration of solar power into the existing electrical grid.
Q: How does a solar inverter handle voltage harmonics?
A solar inverter handles voltage harmonics by incorporating filters and control algorithms that mitigate harmonics and ensure a smooth and stable output voltage.
Q: Can a solar inverter be used in a community solar project?
Yes, a solar inverter can be used in a community solar project. A solar inverter is an essential component that converts the direct current (DC) generated by solar panels into alternating current (AC) for use in homes and businesses. In a community solar project, multiple participants can benefit from a shared solar installation, and each participant can have their own solar inverter to convert the DC energy into usable AC power.
Q: What is the role of a solar inverter in preventing underperformance?
The role of a solar inverter in preventing underperformance is to convert the direct current (DC) electricity produced by the solar panels into alternating current (AC) electricity that can be used to power household appliances and be fed into the grid. The inverter also monitors the performance of the solar system, ensuring that it operates at maximum efficiency and identifying any issues or underperformance. By constantly optimizing the energy production and detecting any problems, the solar inverter plays a crucial role in preventing underperformance and maximizing the overall output of the solar power system.
Q: What is the standby power consumption of a solar inverter?
The standby power consumption of a solar inverter refers to the amount of power that the inverter consumes when it is in standby mode or not actively converting solar energy into usable electricity. This power consumption is generally very low, typically ranging from 1 to 5 watts, as the inverter only needs to maintain its internal circuitry and monitor the solar energy availability.
Q: Are there any government incentives or rebates available for solar inverters?
Yes, there are various government incentives and rebates available for solar inverters. These incentives vary from country to country and even within different regions. They can include tax credits, grants, and rebates offered by federal, state, or local governments. It is recommended to check with relevant government agencies or consult with a solar installer to determine the specific incentives available in the desired location.
Q: Are there any safety considerations when installing a solar inverter?
Yes, there are several safety considerations when installing a solar inverter. Firstly, it is important to ensure that the inverter is installed by a qualified professional who is familiar with local electrical codes and regulations. This helps to minimize the risk of electrical hazards and ensures a safe installation. Additionally, proper grounding and bonding should be implemented to protect against electrical shock and lightning strikes. Adequate ventilation and temperature management are also important to prevent overheating and potential fire hazards. Overall, following safety guidelines and employing professional installation services are crucial to ensure the safe and efficient operation of a solar inverter system.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords