• 24 Volt Solar Inverter PV35-6K Low Frequency DC to AC Solar Power Inverter 12KW System 1
  • 24 Volt Solar Inverter PV35-6K Low Frequency DC to AC Solar Power Inverter 12KW System 2
24 Volt Solar Inverter PV35-6K Low Frequency DC to AC Solar Power Inverter 12KW

24 Volt Solar Inverter PV35-6K Low Frequency DC to AC Solar Power Inverter 12KW

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
10000 watt
Supply Capability:
100000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description

 

What is Solar inverter? 

Solar pv inverters is an electronic system that operates the photovoltaic(PV) modules in a manner that allows the modules to produce all the power they are capable of. The solar mate charge controller is a microprocessor-based system designed to implement the MPPT. It can increase charge current up to 30% or more compared to traditional charge controllers.

 

Features

 

·          Power range 1KW - 12KW

·          Inbuilt pure copper transformer 

·          Powerful charge rate up to 100Amp

·         MPPT solar charge controller 45A 60A (120A Option)

·         PV input:145V max 

·         12V/24V/36V/48V auto work 

·         MPPT efficiency>99% , Peak conversion efficiency>98% 

·          DSP processors architecture ensure high speed and performance 

·         Four-stages charging mode 

·         Protection: PV array short circuit, PV reverse polarity, Battery reverse polarity, Over charging, Output short circuit

·         High efficency design & "Power Saving Mode" to coverse energy 

 

Specification

 

MODEL

PV35-1K

PV35-2K

PV35-3K

PV35-4K


Default Battery System Voltage

12VDC

24VDC

12VDC

24VDC

12VDC

24VDC

12VDC

24VDC


INVERTER OUTPUT

Rated Power

1KW

2KW

3000VA/2.4KW

4000VA/3.2KW


Surge Rating (20ms)

3KW

6KW

9KW

12KW


Capable Of Starting Electric Motor

1HP

1HP

1.5HP

2HP


Waveform

Pure sine wave/ same as input (bypass mode)


Nominal Output Voltage RMS

100V/110V/120VAC 220V/230V/240VAC(+/-10% RMS)


Output Frequency

50Hz/60Hz +/-0.3 Hz


Inverter Efficiency(Peak)

>88%


Line Mode Efficiency

>95%


Power Factor

0.8


Typical Transfer Time

10ms(max)


AC INPUT

Voltage

230VAC

Selectable Voltage Range

96~132VAC/155~280VAC(For Personal Computers)

Frequency Range

50Hz/60Hz (Auto sensing) 40-80Hz

BATTERY

Minimum Start Voltage

10.0VDC /10.5VDC for12VDC mode (*2 for 24VDC, *4 for   48VDC)

Low Battery Alarm

10.5VDC+/-0.3V for12VDC mode (*2 for 24VDC, *4 for   48VDC)

Low Battery Cutoff

10.0VDC+/-0.3V for12VDC mode (*2 for 24VDC, *4 for   48VDC)

High Voltage Alarm

16.0VDC+/-0.3V for12VDC mode (*2 for 24VDC, *4 for   48VDC)

High Battery Voltage Recover

15.5VDC+/-0.3V for12VDC mode (*2 for 24VDC, *4 for   48VDC)

Idle Consumption-Search Mode

<25W when power saver on

CHARGER

Output Voltage

Depends on battery type

Charger AC Input Breaker Rating

10A

30A

30A

30A

Overcharge Protection S.D.

15.7VDC for 12VDC mode (*2 for 24VDC, *4 for 48VDC)

Maximum Charge Current

45A

25A

70A         35A

90A        50A

65A      40A

BTS

Continuous Output Power

Yes Variances in charging voltage & S.D. voltage   base on the battery temperature

BYPASS & PROTECTION

Input Voltage Waveform

Sine wave (grid or generator)

Nominal Input Frequency

50Hz or 60Hz

Overload Protection (SMPS Load)

Circuit breaker

Output Short Circuit Protection

Circuit breaker

Bypass Breaker Rating

10A

15A

20A

40A

Max Bypass Current

30Amp

SOLAR CHARGER

Maximum PV Charge Current

45A

DC Voltage

12V/24V atuo work

Maximum PV Array Power

600W

1200W

600W

1200W

600W

1200W

600W

3200W

MPPT Range @ Operating Voltage(VDC)

16-100VDC for 12V mode,32-100V for 24V mode

Maximum PV Array Open Circuit Voltage

100VDC

147VDC

Maximum Efficiency

>98%

Standby Power Consumption

<2w< span="">

MECHANICAL SPECIFICATIONS

Mounting

Wall mount

Dimensions (W*H*D)

493*311*215mm

Net Weight (Solar CHG) kg

23.5

24.5

25.5

29.5

Shipping Dimensions(W*H*D)

580*400*325mm

Shipping Weight (Solar CHG) kg

25.5

26.5

27.5

31.5

OTHER

Operation Temperature Range

0°C to 40°C

Storage Temperature

-15°C to 60°C

Audible Noise

60dB MAX

Display

LED+LCD

Loading(20GP/40GP/40HQ)

150pcs/300pcs/350pcs





















 


Images

 

PV35-6K Low Frequency DC to AC Solar Power Inverter 12KW

PV35-6K Low Frequency DC to AC Solar Power Inverter 12KW




Packaging & Shipping

What is the packing?

1.Package: Carton Box for packaging, or Wooden Box advised  for Samples to protect in transportations. Package designed by Clients is welcomed.

2.Shipping: DHL,FEDEX,UPS,EMS,AirWay and By Sea. 

3.Payment: T/T( telegraphic transfer (T/T) and Western Union 

4.Welcome to your Sample Order to test First.

   

FAQ

 

Q1: How to choose a right inverter?

A1:Tell us your demand, then our sales will recommend a suitable inverter to you.

Q2: What's the different between inverter and solar inverter?

A2:  Inverter is only accept AC input, but solar inverter not only accept AC input but also can connect with solar panel to accept PV input, it more save power.  

Q3: How about the delivery time?

A3:  7 days for sample; 25 days for bulk order.

 

 



Q: Can a solar inverter be upgraded or expanded in the future?
Yes, a solar inverter can be upgraded or expanded in the future. Many solar inverters have modular designs that allow for easy upgrades or additions of additional components. This flexibility allows homeowners or businesses to increase the capacity of their solar system as their energy needs grow or new technologies become available. Upgrading or expanding a solar inverter can also help improve efficiency and performance, ensuring that the system stays up to date with the latest advancements in the industry.
Q: Can a solar inverter be used with other renewable energy sources like wind or hydro power?
Yes, a solar inverter can be used with other renewable energy sources like wind or hydro power. Inverters are designed to convert the direct current (DC) generated by these renewable sources into alternating current (AC) that can be used to power homes or businesses. By integrating multiple renewable energy sources through a single inverter, it becomes possible to create a more diverse and reliable renewable energy system.
Q: Can a solar inverter be used in mobile or portable solar systems?
Yes, a solar inverter can be used in mobile or portable solar systems. Solar inverters are essential components that convert the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power various devices. They are designed to be adaptable and can be used in a wide range of applications, including mobile or portable solar systems. This allows individuals to harness solar energy and use it to power their devices wherever they go, making it a convenient and sustainable solution for on-the-go power needs.
Q: Can a solar inverter be used with solar-powered desalination systems?
Yes, a solar inverter can be used with solar-powered desalination systems. A solar inverter is responsible for converting the direct current (DC) produced by solar panels into alternating current (AC) that is required for the operation of desalination systems. By integrating a solar inverter, solar energy can efficiently power the desalination process, making it a sustainable and eco-friendly solution for water purification.
Q: What is the role of a power management system in a solar inverter?
The role of a power management system in a solar inverter is to optimize the generation, distribution, and usage of solar power. It ensures efficient energy conversion, monitors the solar panel performance, manages the flow of electricity to and from the grid, and maximizes the overall system efficiency. Additionally, it may include features such as power factor correction, voltage regulation, and protection mechanisms to enhance the reliability and safety of the solar inverter.
Q: What is the role of a solar inverter in a solar-powered electric vehicle charging station?
The role of a solar inverter in a solar-powered electric vehicle charging station is to convert the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to charge electric vehicles. The inverter ensures that the electricity produced by the solar panels is compatible with the charging station and the electric vehicles, allowing for efficient and safe charging.
Q: How do I choose the right solar inverter for my system?
When choosing the right solar inverter for your system, there are several factors to consider. Firstly, you need to assess the size and capacity of your solar panel system to ensure that the inverter can handle the expected power generation. Additionally, consider the type of inverter, such as string inverters, microinverters, or power optimizers, based on the specific needs and limitations of your system. It's also essential to check the inverter's efficiency, warranty, and reliability, as well as compatibility with other system components like batteries or monitoring systems. Lastly, consider your budget and choose an inverter that offers a balance between quality and cost-effectiveness. Consulting with a professional solar installer can provide valuable insights and help you make an informed decision.
Q: Can a solar inverter be used with a solar water pumping system?
Yes, a solar inverter can be used with a solar water pumping system. A solar inverter is responsible for converting the DC power generated by solar panels into AC power that can be used to operate various appliances or systems. In the case of a solar water pumping system, the solar inverter converts the DC power from the solar panels into AC power to run the pump, enabling the system to function effectively.
Q: What maintenance is required for a solar inverter?
Regular maintenance for a solar inverter typically includes visual inspection for dust or dirt accumulation, checking for loose connections, monitoring the inverter's performance, and ensuring proper ventilation. Additionally, it is recommended to clean the solar panels periodically to maximize the system's efficiency.
Q: What is the maximum number of parallel inverters that can be installed in a solar system?
The maximum number of parallel inverters that can be installed in a solar system depends on various factors such as the size and capacity of the solar system, the availability of space, and the electrical requirements of the installation. There is no fixed maximum number as it can vary significantly depending on these factors.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords