• 7KW Solar Inverter PV35-1K Low Frequency DC to AC Solar Power Inverter 12KW System 1
  • 7KW Solar Inverter PV35-1K Low Frequency DC to AC Solar Power Inverter 12KW System 2
7KW Solar Inverter PV35-1K Low Frequency DC to AC Solar Power Inverter 12KW

7KW Solar Inverter PV35-1K Low Frequency DC to AC Solar Power Inverter 12KW

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
1000 watt
Supply Capability:
100000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description

 

What is Solar inverter? 

Solar pv inverters is an electronic system that operates the photovoltaic(PV) modules in a manner that allows the modules to produce all the power they are capable of. The solar mate charge controller is a microprocessor-based system designed to implement the MPPT. It can increase charge current up to 30% or more compared to traditional charge controllers.

 

Features

 

·          Power range 1KW - 12KW

·          Inbuilt pure copper transformer 

·          Powerful charge rate up to 100Amp

·         MPPT solar charge controller 45A 60A (120A Option)

·         PV input:145V max 

·         12V/24V/36V/48V auto work 

·         MPPT efficiency>99% , Peak conversion efficiency>98% 

·          DSP processors architecture ensure high speed and performance 

·         Four-stages charging mode 

·         Protection: PV array short circuit, PV reverse polarity, Battery reverse polarity, Over charging, Output short circuit

·         High efficency design & "Power Saving Mode" to coverse energy 

 

Specification

 

MODEL

PV35-1K

PV35-2K

PV35-3K

PV35-4K


Default Battery System Voltage

12VDC

24VDC

12VDC

24VDC

12VDC

24VDC

12VDC

24VDC


INVERTER OUTPUT

Rated Power

1KW

2KW

3000VA/2.4KW

4000VA/3.2KW


Surge Rating (20ms)

3KW

6KW

9KW

12KW


Capable Of Starting Electric Motor

1HP

1HP

1.5HP

2HP


Waveform

Pure sine wave/ same as input (bypass mode)


Nominal Output Voltage RMS

100V/110V/120VAC 220V/230V/240VAC(+/-10% RMS)


Output Frequency

50Hz/60Hz +/-0.3 Hz


Inverter Efficiency(Peak)

>88%


Line Mode Efficiency

>95%


Power Factor

0.8


Typical Transfer Time

10ms(max)


AC INPUT

Voltage

230VAC

Selectable Voltage Range

96~132VAC/155~280VAC(For Personal Computers)

Frequency Range

50Hz/60Hz (Auto sensing) 40-80Hz

BATTERY

Minimum Start Voltage

10.0VDC /10.5VDC for12VDC mode (*2 for 24VDC, *4 for   48VDC)

Low Battery Alarm

10.5VDC+/-0.3V for12VDC mode (*2 for 24VDC, *4 for   48VDC)

Low Battery Cutoff

10.0VDC+/-0.3V for12VDC mode (*2 for 24VDC, *4 for   48VDC)

High Voltage Alarm

16.0VDC+/-0.3V for12VDC mode (*2 for 24VDC, *4 for   48VDC)

High Battery Voltage Recover

15.5VDC+/-0.3V for12VDC mode (*2 for 24VDC, *4 for   48VDC)

Idle Consumption-Search Mode

<25W when power saver on

CHARGER

Output Voltage

Depends on battery type

Charger AC Input Breaker Rating

10A

30A

30A

30A

Overcharge Protection S.D.

15.7VDC for 12VDC mode (*2 for 24VDC, *4 for 48VDC)

Maximum Charge Current

45A

25A

70A         35A

90A        50A

65A      40A

BTS

Continuous Output Power

Yes Variances in charging voltage & S.D. voltage   base on the battery temperature

BYPASS & PROTECTION

Input Voltage Waveform

Sine wave (grid or generator)

Nominal Input Frequency

50Hz or 60Hz

Overload Protection (SMPS Load)

Circuit breaker

Output Short Circuit Protection

Circuit breaker

Bypass Breaker Rating

10A

15A

20A

40A

Max Bypass Current

30Amp

SOLAR CHARGER

Maximum PV Charge Current

45A

DC Voltage

12V/24V atuo work

Maximum PV Array Power

600W

1200W

600W

1200W

600W

1200W

600W

3200W

MPPT Range @ Operating Voltage(VDC)

16-100VDC for 12V mode,32-100V for 24V mode

Maximum PV Array Open Circuit Voltage

100VDC

147VDC

Maximum Efficiency

>98%

Standby Power Consumption

<2w< span="">

MECHANICAL SPECIFICATIONS

Mounting

Wall mount

Dimensions (W*H*D)

493*311*215mm

Net Weight (Solar CHG) kg

23.5

24.5

25.5

29.5

Shipping Dimensions(W*H*D)

580*400*325mm

Shipping Weight (Solar CHG) kg

25.5

26.5

27.5

31.5

OTHER

Operation Temperature Range

0°C to 40°C

Storage Temperature

-15°C to 60°C

Audible Noise

60dB MAX

Display

LED+LCD

Loading(20GP/40GP/40HQ)

150pcs/300pcs/350pcs





















 


Images

 

PV35-1K Low Frequency DC to AC Solar Power Inverter 12KW

PV35-1K Low Frequency DC to AC Solar Power Inverter 12KW




Packaging & Shipping

What is the packing?

1.Package: Carton Box for packaging, or Wooden Box advised  for Samples to protect in transportations. Package designed by Clients is welcomed.

2.Shipping: DHL,FEDEX,UPS,EMS,AirWay and By Sea. 

3.Payment: T/T( telegraphic transfer (T/T) and Western Union 

4.Welcome to your Sample Order to test First.

   

FAQ

 

Q1: How to choose a right inverter?

A1:Tell us your demand, then our sales will recommend a suitable inverter to you.

Q2: What's the different between inverter and solar inverter?

A2:  Inverter is only accept AC input, but solar inverter not only accept AC input but also can connect with solar panel to accept PV input, it more save power.  

Q3: How about the delivery time?

A3:  7 days for sample; 25 days for bulk order.

 

 



Q: How does shading impact the performance of a solar inverter?
Shading can significantly impact the performance of a solar inverter by reducing the overall energy production of the solar panels. When certain parts of the solar panel are shaded, it creates an imbalance in the current flow, resulting in a decrease in the energy output. This can lead to a decline in the overall efficiency and power generation of the solar inverter. To mitigate this issue, technologies like bypass diodes are used in solar panels to minimize the impact of shading and ensure optimal performance.
Q: What is the role of a solar inverter in preventing electrical faults?
The role of a solar inverter in preventing electrical faults is to convert the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used in homes and businesses. In doing so, the inverter helps maintain a stable and consistent flow of electricity, which reduces the risk of electrical faults such as short circuits, overloads, or voltage fluctuations. It also includes various protection mechanisms, such as ground fault detection and interruption, to ensure the safety and reliability of the solar power system.
Q: What are the communication protocols used in solar inverters?
The communication protocols commonly used in solar inverters are Modbus, SunSpec, and DNP3. These protocols enable the inverters to communicate with other devices and systems, such as monitoring software, energy management systems, and smart grids, to exchange data and control commands.
Q: How does the voltage regulation affect the performance of a solar inverter?
Voltage regulation is a crucial aspect of a solar inverter's performance. It ensures that the output voltage remains stable and within the required range, which directly impacts the efficiency and reliability of the solar inverter. Proper voltage regulation minimizes fluctuations in the output voltage, allowing the solar inverter to efficiently convert the DC power generated by the solar panels into AC power for use in electrical devices. Additionally, maintaining a stable voltage helps protect the connected electrical equipment by preventing overvoltage or undervoltage conditions that could potentially damage them.
Q: What is the maximum efficiency at partial load for a solar inverter?
The maximum efficiency at partial load for a solar inverter refers to the highest level of efficiency that can be achieved when the inverter is operating at less than its full capacity. This efficiency is typically lower than the maximum efficiency at full load, as the inverter may not be able to convert the same amount of energy with the same level of efficiency when it is not running at its maximum capacity.
Q: Can a solar inverter be used with a solar-powered desalination system?
Yes, a solar inverter can be used with a solar-powered desalination system. A solar inverter is responsible for converting the direct current (DC) electricity produced by solar panels into alternating current (AC) electricity that can be used to power electrical devices. In the case of a solar-powered desalination system, the solar inverter would be essential to convert the DC electricity generated by the solar panels into AC electricity to power the desalination equipment and ensure the system functions properly.
Q: What is the role of a communication interface in a solar inverter?
The role of a communication interface in a solar inverter is to allow for seamless communication between the inverter and other devices or systems, such as a solar monitoring system or a smart grid. It enables the inverter to transmit important data, such as energy production, performance metrics, and fault notifications, to the connected devices or systems. Additionally, it allows for remote monitoring and control of the inverter, enabling users to monitor and optimize the performance of their solar power system.
Q: How does MPPT improve the efficiency of a solar inverter?
MPPT (Maximum Power Point Tracking) improves the efficiency of a solar inverter by continuously adjusting the operating point of the solar panels to ensure they are producing maximum power. This is achieved by maximizing the voltage and current output of the panels, which allows the inverter to convert more of the available solar energy into usable electricity. By constantly tracking the maximum power point, MPPT ensures that the solar inverter operates at its highest efficiency, resulting in increased overall system efficiency and improved energy generation.
Q: Solar grid inverter does not merge into the grid, direct access to the load to the load power supply?
In foreign countries due to the higher penetration rate of the car to go out to work or travel can be connected with the inverter battery drive electrical and various tools work.
Q: Can a solar inverter be used with different types of energy management systems?
Yes, a solar inverter can be used with different types of energy management systems. Solar inverters are designed to convert the DC (direct current) electricity generated by solar panels into AC (alternating current) electricity that can be used to power various electrical devices and appliances. These inverters can be integrated with different energy management systems, such as smart grids or battery storage systems, to optimize energy usage, monitor performance, and enhance overall energy efficiency.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords