• 5k Solar Inverter GW12K-DT On Grid Solar Inverter System 1
  • 5k Solar Inverter GW12K-DT On Grid Solar Inverter System 2
  • 5k Solar Inverter GW12K-DT On Grid Solar Inverter System 3
5k Solar Inverter GW12K-DT On Grid Solar Inverter

5k Solar Inverter GW12K-DT On Grid Solar Inverter

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
10 unit
Supply Capability:
100 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

GW12K-DT

 

GW12K-DT photovoltaic inverter is suitable for commercial and industrial roofs as well as small and medium-sized photovoltaic power systems. Rich communication interfaces make it more convenient for network and monitoring. The use of film capacitor achieves longer service life, more stable system and super-large LCD screen so that we have a commanding view to the run data of the machine.

DC Input DataMax.PV-generator power[W]12300
Max.DC voltage[V]1000
MPPT voltage range[V]500~800
Turn on DC voltage[V]250

Max.DC work current[A]

22/11
Number of inputs/MPP trackers4/2
DC connectorSUNCLIX,MC IV (optional)
Standby power consumption [W]10
AC Output DataNominal AC power[W]12000
Max.AC power[W]12000
Max.output current[A]19
Nominal output voltage rangeVDE-AR-N4105,VDE0126-1-1/A1,RD1699,G59/2,AS4777.2/.3
AC grid frequencyVDE-AR-N4105,VDE0126-1-1/A1,RD1699,G59/2,AS4777.2/.3
THDi<1.5%< td="">
Power factor0.90 leading...0.90 lagging
AC connection3W/N/PE,230/400V
EfficiencyMax.efficiency98.0%
European efficiency97.5%
MPPT adaptation efficiency>99.5%
Safty EquipmentLeakage current monitoring unitIntegrated
DC switch disconnectorOptional
Islanding protectionAFD
Grid monitoringVDE-AR-N4105,VDE0126-1-1/A1,RD1699,G59/2,AS4777.2/.3
Normative ReferenceEMC complianceEN 61000-6-1 , EN61000-6-2, EN 61000-6-3, EN 61000-6-4
Safety complianceIEC 62109-1, AS3100
General DataDimensions(W*H*D) [mm]516*650*203
Net weight [kg]39
HousingFor outdoor and indoor
Mounting informationWall mounting
Operating temperature range-20~60℃(up 45℃ derating)
Relative humidity0 ~ 95%
Site altitude[m]2000
IP proection classIP65
TopologyTransformerless
CoolingFan Cooling
Noise level[dB]<45< td="">
Display5"LCD
CommunicationUSB2.0;RS485/Wi-Fi/ZigBee(optional)
Standard warranty[years]5/10/15/20/25(optional)

 

Q: How does a solar inverter handle fluctuations in solar panel output?
A solar inverter handles fluctuations in solar panel output by continuously monitoring the voltage and current levels of the panels. It adjusts the power conversion process to match the varying output and optimize the energy conversion. This allows it to maintain a stable and consistent output, even when the solar panel's output fluctuates due to factors like shading, cloud cover, or changes in sunlight intensity.
Q: Can a solar inverter be used in conjunction with a power factor correction device?
Yes, a solar inverter can be used in conjunction with a power factor correction device. The power factor correction device is designed to improve the power factor of the electrical system and optimize the efficiency of energy usage. When connected to a solar inverter, it helps to correct the power factor of the solar power system, ensuring better utilization of the generated solar energy and reducing any potential power losses.
Q: Can a solar inverter be used with a solar water heating system?
No, a solar inverter cannot be used with a solar water heating system. Solar inverters are designed to convert the direct current (DC) power generated by solar panels into alternating current (AC) power for use in electrical appliances. On the other hand, solar water heating systems use solar collectors to heat water directly, without the need for electrical conversion. Therefore, the two systems serve different purposes and are not compatible with each other.
Q: Can a solar inverter be used with solar-powered electric fences?
Yes, a solar inverter can be used with solar-powered electric fences. A solar inverter is responsible for converting the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power various devices, including electric fences. This allows for an efficient and sustainable solution to power electric fences using solar energy.
Q: How does a solar inverter handle grid faults and disturbances?
A solar inverter is equipped with various protective features to handle grid faults and disturbances. It continuously monitors the grid voltage and frequency, and in the event of a fault or disturbance, it reacts quickly to ensure the safety of the system and prevent any damage. The inverter's built-in protection mechanisms, such as overvoltage and overcurrent protection, allow it to disconnect from the grid when necessary. This protects the inverter and the solar panels from potential harm caused by grid faults. Additionally, some advanced solar inverters offer features like anti-islanding protection, which prevent the inverter from feeding power into the grid during a fault or disturbance, further ensuring the stability and reliability of the system.
Q: How does the quality of the AC waveform affect the performance of a solar inverter?
The quality of the AC waveform directly affects the performance of a solar inverter. A poor or distorted waveform can lead to various issues such as reduced efficiency, increased power losses, and potential damage to the inverter. On the other hand, a clean and stable AC waveform ensures optimal functioning of the inverter, resulting in improved overall performance and reliability.
Q: Can a solar inverter be used for both grid-tied and off-grid systems?
Yes, a solar inverter can be used for both grid-tied and off-grid systems. However, it is important to note that there are different types of solar inverters designed specifically for each system. Grid-tied inverters are designed to convert DC power generated by solar panels into AC power and feed it into the grid, while off-grid inverters are designed to convert DC power into AC power for use in standalone systems not connected to the grid.
Q: What is the role of a solar inverter in preventing overloading?
The role of a solar inverter in preventing overloading is to regulate the flow of electricity from the solar panels to the electrical grid or battery system. It ensures that the amount of power being generated by the solar panels does not exceed the capacity of the grid or battery, thus preventing overloading and potential damage to the system.
Q: Can a solar inverter be used with different types of solar PV systems (roof-mounted, ground-mounted, etc.)?
Different types of solar PV systems, such as roof-mounted, ground-mounted, and other variations, can utilize a solar inverter. The primary function of a solar inverter is to convert the direct current (DC) electricity produced by solar panels into alternating current (AC) electricity. This converted electricity can be used to power appliances and can also be fed into the electrical grid. The conversion process remains consistent regardless of the type of PV system being used. However, it's crucial to consider that the solar inverter's requirements and specifications may differ depending on the type of PV system. Different PV systems may have varying voltage and power outputs, which may necessitate specific inverter models capable of handling these requirements. For instance, ground-mounted solar systems may have larger arrays and higher power outputs than roof-mounted systems, requiring a different type of inverter. Hence, while a solar inverter can generally be used with various types of solar PV systems, it is essential to select an inverter that is compatible with the specific system's voltage, power output, and other technical specifications. It is always advisable to consult with a professional solar installer or technician to ensure the appropriate selection and installation of the solar inverter for your particular PV system.
Q: Are there any maintenance requirements for a solar inverter?
Yes, solar inverters require regular maintenance to ensure optimal performance and longevity. This typically includes cleaning the unit and its surroundings to prevent dust buildup, checking for any loose connections or wiring issues, inspecting for physical damage, and monitoring the inverter's performance through regular system checks. Additionally, firmware updates and software upgrades may be necessary to enhance efficiency and address any potential issues.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords