• 5k Solar Inverter GW12K-DT On Grid Solar Inverter System 1
  • 5k Solar Inverter GW12K-DT On Grid Solar Inverter System 2
  • 5k Solar Inverter GW12K-DT On Grid Solar Inverter System 3
5k Solar Inverter GW12K-DT On Grid Solar Inverter

5k Solar Inverter GW12K-DT On Grid Solar Inverter

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
10 unit
Supply Capability:
100 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

GW12K-DT

 

GW12K-DT photovoltaic inverter is suitable for commercial and industrial roofs as well as small and medium-sized photovoltaic power systems. Rich communication interfaces make it more convenient for network and monitoring. The use of film capacitor achieves longer service life, more stable system and super-large LCD screen so that we have a commanding view to the run data of the machine.

DC Input DataMax.PV-generator power[W]12300
Max.DC voltage[V]1000
MPPT voltage range[V]500~800
Turn on DC voltage[V]250

Max.DC work current[A]

22/11
Number of inputs/MPP trackers4/2
DC connectorSUNCLIX,MC IV (optional)
Standby power consumption [W]10
AC Output DataNominal AC power[W]12000
Max.AC power[W]12000
Max.output current[A]19
Nominal output voltage rangeVDE-AR-N4105,VDE0126-1-1/A1,RD1699,G59/2,AS4777.2/.3
AC grid frequencyVDE-AR-N4105,VDE0126-1-1/A1,RD1699,G59/2,AS4777.2/.3
THDi<1.5%< td="">
Power factor0.90 leading...0.90 lagging
AC connection3W/N/PE,230/400V
EfficiencyMax.efficiency98.0%
European efficiency97.5%
MPPT adaptation efficiency>99.5%
Safty EquipmentLeakage current monitoring unitIntegrated
DC switch disconnectorOptional
Islanding protectionAFD
Grid monitoringVDE-AR-N4105,VDE0126-1-1/A1,RD1699,G59/2,AS4777.2/.3
Normative ReferenceEMC complianceEN 61000-6-1 , EN61000-6-2, EN 61000-6-3, EN 61000-6-4
Safety complianceIEC 62109-1, AS3100
General DataDimensions(W*H*D) [mm]516*650*203
Net weight [kg]39
HousingFor outdoor and indoor
Mounting informationWall mounting
Operating temperature range-20~60℃(up 45℃ derating)
Relative humidity0 ~ 95%
Site altitude[m]2000
IP proection classIP65
TopologyTransformerless
CoolingFan Cooling
Noise level[dB]<45< td="">
Display5"LCD
CommunicationUSB2.0;RS485/Wi-Fi/ZigBee(optional)
Standard warranty[years]5/10/15/20/25(optional)

 

Q: What are the potential risks of short-circuiting a solar inverter?
Short-circuiting a solar inverter can pose several potential risks. Firstly, it can cause damage to the solar inverter itself, leading to costly repairs or replacement. Secondly, it can disrupt the flow of electricity and potentially cause a fire hazard if not addressed promptly. Additionally, short-circuiting can result in power outages, causing inconvenience and potential financial losses. Lastly, it may void the warranty of the solar inverter, leaving the owner responsible for any damages or malfunctions.
Q: How does a solar inverter handle power factor optimization?
A solar inverter handles power factor optimization by continuously monitoring the power factor of the AC output and adjusting its operation accordingly. It employs various techniques such as reactive power compensation, voltage regulation, and harmonic suppression to ensure that the power factor remains close to unity, maximizing the efficiency of the solar system.
Q: What is the maximum power output of a residential solar inverter?
The maximum power output of a residential solar inverter can vary depending on the specific model and capacity. However, on average, residential solar inverters typically have a maximum power output ranging from 3 kilowatts (kW) to 10 kW.
Q: What are the methods of photovoltaic grid-connected inverter control
Inverter main circuit need to have a control circuit to achieve, generally have square wave and sine wave two control methods, square wave output inverter power supply circuit is simple, low cost, but low efficiency, harmonic components. Sine wave output is the development trend of the inverter, with the development of microelectronics technology, there are PWM function of the microprocessor has also come out, so the sine wave output inverter technology has matured.
Q: Can a solar inverter be connected to a backup battery system?
Yes, a solar inverter can be connected to a backup battery system. This allows the excess solar energy generated during the day to be stored in the backup battery system for later use during times when there is no sunlight available, such as at night or during power outages.
Q: How does a solar inverter handle power quality issues in the grid?
A solar inverter helps to handle power quality issues in the grid by continuously monitoring the voltage and frequency of the grid. If it detects any variations or deviations from the standard levels, it adjusts its own output accordingly to maintain a stable and reliable power supply. Additionally, some advanced solar inverters also incorporate features like power factor correction and voltage regulation to further enhance power quality and ensure efficient utilization of the solar energy generated.
Q: What is the role of a solar inverter in a solar-powered remote monitoring system?
The role of a solar inverter in a solar-powered remote monitoring system is to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be used to power the monitoring system. It also ensures that the electricity generated matches the requirements of the monitoring equipment, regulates the voltage, and assists in efficient power transmission and distribution.
Q: Can a solar inverter be used in off-grid systems?
Yes, a solar inverter can be used in off-grid systems. In off-grid systems, solar inverters are essential as they convert the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power appliances and devices. They also play a crucial role in managing the battery storage and regulating energy flow in off-grid setups.
Q: Can a solar inverter be used for both residential and commercial applications?
Yes, a solar inverter can be used for both residential and commercial applications. Solar inverters are designed to convert the DC electricity generated by solar panels into AC electricity that can be used to power homes or businesses. They can be scaled to accommodate the specific energy needs of residential or commercial properties, making them suitable for various applications.
Q: How does a solar inverter handle voltage fluctuations?
A solar inverter handles voltage fluctuations by continuously monitoring the incoming solar power and adjusting its output voltage accordingly. It uses advanced electronics and control algorithms to ensure that the output voltage remains stable and within a specified range, regardless of variations in the input voltage. This allows it to provide a consistent and safe supply of electricity to connected devices, even in the presence of voltage fluctuations.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords