• Pv3500 Solar Inverter PV35-9K Low Frequency DC to AC Solar Power Inverter 12KW System 1
  • Pv3500 Solar Inverter PV35-9K Low Frequency DC to AC Solar Power Inverter 12KW System 2
Pv3500 Solar Inverter PV35-9K Low Frequency DC to AC Solar Power Inverter 12KW

Pv3500 Solar Inverter PV35-9K Low Frequency DC to AC Solar Power Inverter 12KW

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
1000 watt
Supply Capability:
100000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description

 

What is Solar inverter? 

Solar pv inverters is an electronic system that operates the photovoltaic(PV) modules in a manner that allows the modules to produce all the power they are capable of. The solar mate charge controller is a microprocessor-based system designed to implement the MPPT. It can increase charge current up to 30% or more compared to traditional charge controllers.

 

Features

 

·          Power range 1KW - 12KW

·          Inbuilt pure copper transformer 

·          Powerful charge rate up to 100Amp

·         MPPT solar charge controller 45A 60A (120A Option)

·         PV input:145V max 

·         12V/24V/36V/48V auto work 

·         MPPT efficiency>99% , Peak conversion efficiency>98% 

·          DSP processors architecture ensure high speed and performance 

·         Four-stages charging mode 

·         Protection: PV array short circuit, PV reverse polarity, Battery reverse polarity, Over charging, Output short circuit

·         High efficency design & "Power Saving Mode" to coverse energy 

 

Specification

 

MODEL

PV35-1K

PV35-2K

PV35-3K

PV35-4K


Default Battery System Voltage

12VDC

24VDC

12VDC

24VDC

12VDC

24VDC

12VDC

24VDC


INVERTER OUTPUT

Rated Power

1KW

2KW

3000VA/2.4KW

4000VA/3.2KW


Surge Rating (20ms)

3KW

6KW

9KW

12KW


Capable Of Starting Electric Motor

1HP

1HP

1.5HP

2HP


Waveform

Pure sine wave/ same as input (bypass mode)


Nominal Output Voltage RMS

100V/110V/120VAC 220V/230V/240VAC(+/-10% RMS)


Output Frequency

50Hz/60Hz +/-0.3 Hz


Inverter Efficiency(Peak)

>88%


Line Mode Efficiency

>95%


Power Factor

0.8


Typical Transfer Time

10ms(max)


AC INPUT

Voltage

230VAC

Selectable Voltage Range

96~132VAC/155~280VAC(For Personal Computers)

Frequency Range

50Hz/60Hz (Auto sensing) 40-80Hz

BATTERY

Minimum Start Voltage

10.0VDC /10.5VDC for12VDC mode (*2 for 24VDC, *4 for   48VDC)

Low Battery Alarm

10.5VDC+/-0.3V for12VDC mode (*2 for 24VDC, *4 for   48VDC)

Low Battery Cutoff

10.0VDC+/-0.3V for12VDC mode (*2 for 24VDC, *4 for   48VDC)

High Voltage Alarm

16.0VDC+/-0.3V for12VDC mode (*2 for 24VDC, *4 for   48VDC)

High Battery Voltage Recover

15.5VDC+/-0.3V for12VDC mode (*2 for 24VDC, *4 for   48VDC)

Idle Consumption-Search Mode

<25W when power saver on

CHARGER

Output Voltage

Depends on battery type

Charger AC Input Breaker Rating

10A

30A

30A

30A

Overcharge Protection S.D.

15.7VDC for 12VDC mode (*2 for 24VDC, *4 for 48VDC)

Maximum Charge Current

45A

25A

70A         35A

90A        50A

65A      40A

BTS

Continuous Output Power

Yes Variances in charging voltage & S.D. voltage   base on the battery temperature

BYPASS & PROTECTION

Input Voltage Waveform

Sine wave (grid or generator)

Nominal Input Frequency

50Hz or 60Hz

Overload Protection (SMPS Load)

Circuit breaker

Output Short Circuit Protection

Circuit breaker

Bypass Breaker Rating

10A

15A

20A

40A

Max Bypass Current

30Amp

SOLAR CHARGER

Maximum PV Charge Current

45A

DC Voltage

12V/24V atuo work

Maximum PV Array Power

600W

1200W

600W

1200W

600W

1200W

600W

3200W

MPPT Range @ Operating Voltage(VDC)

16-100VDC for 12V mode,32-100V for 24V mode

Maximum PV Array Open Circuit Voltage

100VDC

147VDC

Maximum Efficiency

>98%

Standby Power Consumption

<2w< span="">

MECHANICAL SPECIFICATIONS

Mounting

Wall mount

Dimensions (W*H*D)

493*311*215mm

Net Weight (Solar CHG) kg

23.5

24.5

25.5

29.5

Shipping Dimensions(W*H*D)

580*400*325mm

Shipping Weight (Solar CHG) kg

25.5

26.5

27.5

31.5

OTHER

Operation Temperature Range

0°C to 40°C

Storage Temperature

-15°C to 60°C

Audible Noise

60dB MAX

Display

LED+LCD

Loading(20GP/40GP/40HQ)

150pcs/300pcs/350pcs





















 


Images

 

PV35-9K Low Frequency DC to AC Solar Power Inverter 12KW

PV35-9K Low Frequency DC to AC Solar Power Inverter 12KW




Packaging & Shipping

What is the packing?

1.Package: Carton Box for packaging, or Wooden Box advised  for Samples to protect in transportations. Package designed by Clients is welcomed.

2.Shipping: DHL,FEDEX,UPS,EMS,AirWay and By Sea. 

3.Payment: T/T( telegraphic transfer (T/T) and Western Union 

4.Welcome to your Sample Order to test First.

   

FAQ

 

Q1: How to choose a right inverter?

A1:Tell us your demand, then our sales will recommend a suitable inverter to you.

Q2: What's the different between inverter and solar inverter?

A2:  Inverter is only accept AC input, but solar inverter not only accept AC input but also can connect with solar panel to accept PV input, it more save power.  

Q3: How about the delivery time?

A3:  7 days for sample; 25 days for bulk order.

 

 



Q: Can a solar inverter be used with solar-powered recreational vehicles (RVs)?
Yes, a solar inverter can be used with solar-powered recreational vehicles (RVs). Solar inverters convert the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power various appliances and devices in the RV. This allows RV owners to utilize solar energy for their electrical needs while on the road.
Q: How does a solar inverter handle grid synchronization during startup?
During startup, a solar inverter handles grid synchronization by employing a process called anti-islanding. The inverter continuously monitors the grid voltage and frequency to ensure that it matches the required standards. It remains disconnected from the grid until it detects stable and synchronized grid conditions. Once the grid parameters are within the acceptable range, the inverter synchronizes its output waveform with the grid and gradually ramps up its power production. This ensures a smooth and safe integration of the solar system with the grid, preventing any potential issues like islanding or instability.
Q: Can a solar inverter be used with dual MPPT inputs?
Yes, a solar inverter can be used with dual MPPT inputs. Dual MPPT (Maximum Power Point Tracking) inputs allow the inverter to optimize the power output from two separate solar arrays or strings, thereby increasing overall energy efficiency and system performance.
Q: What is the maximum current output of a solar inverter?
The maximum current output of a solar inverter depends on its size and specifications. In general, smaller residential inverters may have a maximum output current of around 8-12 amps, while larger commercial or utility-scale inverters can go up to several hundred amps. It is important to select an inverter that matches the specific requirements of the solar PV system to ensure optimal performance and safety.
Q: What are the potential risks of overvoltage in a solar inverter?
The potential risks of overvoltage in a solar inverter include damaging the inverter itself, reducing its lifespan, and potentially causing a fire or electrical hazard. Overvoltage can also lead to the failure of other connected components, such as solar panels or batteries, and may even result in a complete system shutdown. It is crucial to implement protective measures, such as surge protectors or voltage regulators, to mitigate the risks associated with overvoltage.
Q: What is the role of a power monitoring feature in a solar inverter?
The role of a power monitoring feature in a solar inverter is to track and measure the amount of power generated by the solar panels. It provides real-time data on the energy production, allowing users to monitor the system's performance, identify any issues or inefficiencies, and optimize the overall energy output. This feature is crucial for ensuring the effective and efficient operation of a solar power system.
Q: Can a solar inverter be used with a solar-powered security camera system?
Yes, a solar inverter can be used with a solar-powered security camera system. A solar inverter is responsible for converting the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power electrical devices, including security cameras. By connecting the solar panels to a solar inverter, the generated solar energy can be efficiently utilized to power the security camera system.
Q: How do you calculate the power loss in a solar inverter?
To calculate the power loss in a solar inverter, you need to subtract the output power from the input power. The input power can be determined by multiplying the input voltage and input current, while the output power is obtained by multiplying the output voltage and output current. Subtracting the output power from the input power will give you the power loss in the solar inverter.
Q: Can a solar inverter be used with a grid-tied system and a battery backup?
Yes, a solar inverter can be used with a grid-tied system and a battery backup. In this setup, the solar inverter will convert the DC power generated by the solar panels into AC power, which can be used to power your home or business. The excess power can be fed back into the grid, earning credits or reducing your electricity bill. Additionally, a battery backup system can be connected to the solar inverter, allowing the excess solar energy to be stored in batteries for later use during power outages or when the grid is not available.
Q: Can a solar inverter be used with thin-film solar panels?
Yes, a solar inverter can be used with thin-film solar panels. Thin-film solar panels have a different structure and composition compared to traditional crystalline silicon panels, but they still generate DC electricity that needs to be converted into AC for use in homes or businesses. A solar inverter is responsible for this conversion process, regardless of the type of solar panels used.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords