• Loom Solar Inverter Sun-5k-sg03lp1-eu 5kw Single Phase 2 MPPT Hybrid Inverter Low Voltage Battery System 1
  • Loom Solar Inverter Sun-5k-sg03lp1-eu 5kw Single Phase 2 MPPT Hybrid Inverter Low Voltage Battery System 2
  • Loom Solar Inverter Sun-5k-sg03lp1-eu 5kw Single Phase 2 MPPT Hybrid Inverter Low Voltage Battery System 3
  • Loom Solar Inverter Sun-5k-sg03lp1-eu 5kw Single Phase 2 MPPT Hybrid Inverter Low Voltage Battery System 4
  • Loom Solar Inverter Sun-5k-sg03lp1-eu 5kw Single Phase 2 MPPT Hybrid Inverter Low Voltage Battery System 5
Loom Solar Inverter Sun-5k-sg03lp1-eu 5kw Single Phase 2 MPPT Hybrid Inverter Low Voltage Battery

Loom Solar Inverter Sun-5k-sg03lp1-eu 5kw Single Phase 2 MPPT Hybrid Inverter Low Voltage Battery

Ref Price:
get latest price
Loading Port:
Ningbo
Payment Terms:
TT OR LC
Min Order Qty:
100 pc
Supply Capability:
5000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Output Power:
5000W
Inveter Efficiency:
97.00-97.60%
Output Voltage(V):
220
Input Voltage(V):
370
Output Current(A):
22.7
Output Frequency:
50/60Hz

SUN 5K-SGhybrid inverter, is suitable for residential and light commercial use, maximizing self-consumption rate of solar energy and increasing your energy impendence.   During the day, the PV system generates electricity which will be provided to the loads initially. Then, the excess energy will charge the battery via SUN 6K-SG. Finally, the stored energy can be released when the loads require it. The battery can also be charged by the diesel generator to ensure uninterrupted supply in the event of grid blackout.

100% unbalanced output, each phase; Max. output up to 50% rated power

DC couple and AC couple to retrofit existing solar system

Max. 16pcs parallel for on-grid and off-grid operation; Support multiple batteries parallel

Max. charging/discharging current of 240A

48V low voltage battery, transformer isolation design

6 time periods for battery charging/discharging


ModelSUN-5K
    -SG03LP1-EU
Battery Input Data
Battery TypeLead-acid   or Li-lon
Battery Voltage Range (V)40~60
Max. Charging Current (A)120
Max. Discharging Current (A)120
External Temperature SensorYes
Charging Curve3   Stages / Equalization
Charging Strategy for Li-Ion BatterySelf-adaption   to BMS
PV String Input Data
Max. DC Input Power (W)6500
Rated PV Input Voltage (V)370   (125~500)
Start-up Voltage (V)125
MPPT Voltage Range (V)150-425
Full Load DC Voltage Range (V)300-425
PV Input Current (A)13+13
Max. PV ISC (A)17+17
Number of MPPT / Strings per MPPT2/1+1
AC Output Data
Rated AC Output and UPS Power (W)5000
Max. AC Output Power (W)5500
AC Output Rated Current (A)22.7
Max. AC Current (A)25
Max. Continuous AC Passthrough (A)35
Peak Power (off grid)2   time of rated power, 10 S
Power Factor0.8   leading to 0.8 lagging
Output Frequency and Voltage50/60Hz;   L/N/PE  220/230Vac (single phase)
Grid TypeSingle   Phase
DC injection current (mA)THD<3%   (Linear load<1.5%)< td="">
Efficiency
Max. Efficiency97.60%
Euro Efficiency97.00%
MPPT Efficiency99.90%
Protection
IntegratedPV   Input Lightning Protection, Anti-islanding Protection, PV String Input   Reverse Polarity Protection, Insulation Resistor Detection, Residual Current   Monitoring Unit, Output Over Current Protection, Output Shorted Protection,   Surge protection
Output Over Voltage ProtectionDC   Type II/AC Type III
Certifications and Standards
Grid RegulationCEI   0-21, VDE-AR-N 4105, NRS 097, IEC 62116, IEC 61727, G99, G98,
    VDE 0126-1-1, RD 1699, C10-11
Safety EMC / StandardIEC/EN   61000-6-1/2/3/4, IEC/EN 62109-1, IEC/EN 62109-2
General Data
Operating Temperature Range (-45~60, >45 derating
 CoolingNatural   cooling
Noise (dB)<30   dB 
 Communication with   BMS RS485;   CAN 
Weight (kg)20.5
Size (mm)330W   x 580H x232D
    IP65
Protection DegreeIP65
Installation StyleWall-mounted
Warranty 5 years



Q: What are the common maintenance requirements for a solar inverter?
Some common maintenance requirements for a solar inverter include regular cleaning to remove dust and debris, checking for loose connections or wiring issues, monitoring performance and output levels, and ensuring proper ventilation to prevent overheating. It is also important to keep an eye on the inverter's display for error messages or any signs of malfunctioning. Regular inspections and maintenance by a qualified technician are recommended to ensure optimal performance and longevity of the solar inverter.
Q: Are there any noise or sound considerations with a solar inverter?
Yes, there are noise considerations with a solar inverter. While solar inverters typically produce low levels of noise, it is important to ensure that the inverter is placed in a well-ventilated area to avoid any potential fan or cooling system noise. Additionally, some older models of inverters may produce a slight humming sound during operation, although newer models have significantly reduced this noise.
Q: What is the maximum operating altitude for a solar inverter?
The maximum operating altitude for a solar inverter can vary depending on the specific model and manufacturer. However, most solar inverters are designed to operate effectively up to an altitude of around 2,000 meters or 6,500 feet above sea level. It is important to consult the manufacturer's specifications for the specific model to determine the exact maximum operating altitude.
Q: How does a solar inverter synchronize with the grid frequency?
A solar inverter synchronizes with the grid frequency by continuously monitoring the frequency of the electricity supplied by the grid. It adjusts its own output frequency to match the grid frequency, ensuring that the electricity it generates is synchronized with the grid. This synchronization allows the solar inverter to seamlessly inject power into the grid and maintain a stable and reliable electrical supply.
Q: What is the maximum AC current output of a solar inverter?
The maximum AC current output of a solar inverter varies depending on the model and capacity of the inverter. Generally, it can range from a few amps to several hundred amps.
Q: Can a solar inverter work during a power outage?
No, a solar inverter cannot work during a power outage unless it is specifically designed with a battery backup system.
Q: What is the maximum number of solar panels that a solar inverter can support?
The maximum number of solar panels that a solar inverter can support depends on the capacity and specifications of the specific inverter model. There is no universal limit, as different inverters have different capabilities, but typically, a solar inverter can support anywhere from a few panels to several hundred panels. It is important to consult the manufacturer's guidelines and technical specifications to determine the maximum number of panels that a particular solar inverter can handle.
Q: Can a solar inverter be used with a portable solar panel system?
Yes, a solar inverter can be used with a portable solar panel system. The solar inverter is responsible for converting the direct current (DC) energy produced by the solar panels into alternating current (AC) that can be used to power electronic devices. A portable solar panel system typically includes a solar panel, a charge controller, and a battery, and the solar inverter can be connected to this system to convert the DC energy stored in the battery into AC energy for powering appliances or charging electronic devices.
Q: How does a solar inverter handle voltage regulation during high demand?
A solar inverter handles voltage regulation during high demand by constantly monitoring the grid voltage and adjusting its output accordingly. When there is high demand, the inverter ramps up its power output to ensure that the voltage remains stable and within the acceptable range. It does so by regulating the reactive power flow and employing advanced control algorithms to maintain grid stability.
Q: Can a solar inverter be remotely monitored and controlled?
Yes, a solar inverter can be remotely monitored and controlled. Many modern solar inverters are equipped with built-in communication capabilities, allowing them to be connected to a monitoring system or software. This enables users to remotely monitor the performance, efficiency, and power output of their solar inverters, as well as control various settings and parameters. Remote monitoring and control of solar inverters can provide real-time data, fault detection, and even allow for performance optimization, making it easier for owners or operators to manage and maintain their solar energy systems.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords