• Hrb400 Deformed Steel Bar Supplier from Tianjin System 1
  • Hrb400 Deformed Steel Bar Supplier from Tianjin System 2
  • Hrb400 Deformed Steel Bar Supplier from Tianjin System 3
  • Hrb400 Deformed Steel Bar Supplier from Tianjin System 4
  • Hrb400 Deformed Steel Bar Supplier from Tianjin System 5
  • Hrb400 Deformed Steel Bar Supplier from Tianjin System 6
Hrb400 Deformed Steel Bar Supplier from Tianjin

Hrb400 Deformed Steel Bar Supplier from Tianjin

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
50000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel
Shape:
Steel Round Bar

Hrb400 Deformed Steel Bar Supplier from Tianjin

Description of Hrb400 Deformed Steel Bar:

1, Diameter: 5.5mm-10mm rounds Hrb400 deformed steel bar

                       10m- 40mm Hrb400 deformed steel bar

2, Length:  6m, 9m, 12m or customized

3, Standard: GB, ASTM, AISI, SAE, DIN, JIS, EN

                    OEM technology - send detailed technical parameters for accurate quotation.

2, Produce Process: hot rolled or forged to get the steel round bar and plate

3, Heat Treatment: annealing, normalizing, tempering, quenching

4, Surface Treatment: Black

5, Quality Assurance: We accept third party inspection for all orders. 

Chemical Composition of Hrb400 Deformed Steel Bar:

Grade

Technical data of the original chemical composition(%)

Reinforcing steel bar HRB335

C

Mn

Si

S

P

B

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

>0.0008

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 335

≥490

≥16

Reinforcing steel bar HRB400

C

Mn

Si

S

P

B

≤0.25

≤0.16

≤0.80

≤0.045

≤0.045

0.04-0.12

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 400

≥ 570

≥ 14

Product Show of Hrb400 Deformed Steel Bar:

Verified Suppliers Bs4449 Deformed Steel Bar Manufacturer


Company Information:

CNBM International Corporation is the most important trading platform of CNBM group.

Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.

Verified Suppliers Bs4449 Deformed Steel Bar ManufacturerVerified Suppliers Bs4449 Deformed Steel Bar Manufacturer 

 

FAQ:

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3,  Factory or Trading Company?

      CNBM is a trading company but we have so many protocol factories and CNBM works as a trading department of these factories. Also CNBM is the holding company of many factories.

4, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

5, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

6, After-sale Service?

     CNBM provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.





Q:How does special steel contribute to reducing product failure?
Special steel contributes to reducing product failure by providing enhanced strength, durability, and resistance to various external factors such as corrosion, wear, and extreme temperatures. Its unique properties make it suitable for critical components and applications where failure could have severe consequences. By using special steel in the manufacturing process, products are less likely to fail prematurely, ensuring reliability, safety, and ultimately reducing the risk of accidents or malfunctions.
Q:How is corrosion-resistant stainless tool steel used in the production of food processing equipment?
Corrosion-resistant stainless tool steel is used in the production of food processing equipment due to its ability to withstand exposure to moisture, chemicals, and high temperatures. This type of steel prevents rusting and corrosion, ensuring the equipment remains hygienic and safe for food processing. It is commonly used for manufacturing blades, cutters, and other components that come into direct contact with food. Additionally, its durability and strength make it ideal for withstanding the rigorous demands of food processing operations, enhancing the equipment's longevity and performance.
Q:What are the different techniques used for joining special steel?
Some of the different techniques used for joining special steel include welding, brazing, soldering, and mechanical fastening. Welding involves melting the surfaces of the steel pieces to be joined and fusing them together. Brazing and soldering involve using a filler material that melts at a lower temperature than the steel to join the pieces together. Mechanical fastening techniques, such as bolts, screws, or rivets, can also be used to join special steel components together.
Q:What are the different heat treatment techniques used for special steel?
Some of the different heat treatment techniques used for special steel include annealing, tempering, quenching, and case hardening. Annealing is a process that involves heating the steel to a specific temperature and then slowly cooling it to relieve stress and improve its ductility. Tempering is done by reheating the steel to a lower temperature after quenching to reduce brittleness and increase toughness. Quenching is a rapid cooling process that involves immersing the steel in a quenching medium like oil or water to achieve high hardness. Case hardening is a technique that involves adding a hard outer layer to the steel by introducing carbon or nitrogen into its surface and then heat treating it to achieve desired properties. These techniques are used to modify the structure and properties of special steel to meet specific application requirements.
Q:How does special steel contribute to the performance of cutting tools?
Special steel plays a crucial role in enhancing the performance of cutting tools by providing a range of beneficial properties. Firstly, special steel used in cutting tool manufacturing offers exceptional hardness, which allows the tool to withstand high levels of stress and wear. This hardness ensures that the cutting edge remains sharp for a longer period, resulting in improved cutting efficiency and precision. Moreover, special steel is known for its excellent toughness and resistance to chipping and breaking. This property is crucial in cutting tools as it allows them to withstand the high forces and vibrations generated during the cutting process. The toughness of special steel ensures that the tool can endure these extreme conditions without compromising its performance or structural integrity. Additionally, special steel offers excellent heat resistance and temperature stability. During cutting operations, the tool can generate significant amounts of heat due to friction. Special steel's ability to resist thermal deformation and maintain its hardness at high temperatures prevents the cutting edge from becoming dull or losing its effectiveness. Furthermore, special steel can be tailored to specific applications through alloying and heat treatment processes. This flexibility allows manufacturers to optimize the steel's properties based on the cutting tool's intended use, such as cutting different materials or operating in challenging environments. By customizing the special steel, cutting tools can be designed to deliver optimum performance, durability, and longevity. In conclusion, special steel contributes significantly to the performance of cutting tools by providing exceptional hardness, toughness, heat resistance, and customization options. These properties ensure that cutting tools remain sharp, durable, and efficient, enabling them to achieve precise cuts and withstand demanding cutting operations.
Q:What are the different methods of surface passivation for special steel?
There are several different methods of surface passivation for special steel, each designed to improve the corrosion resistance and overall performance of the material. One common method is the use of chemical passivation, which involves the application of a protective coating to the surface of the steel. This coating can be made from various materials, such as chromium oxide or nitric acid, and is typically applied through a chemical reaction that forms a protective layer on the steel's surface. Chemical passivation is often used in industries where the steel is exposed to corrosive environments, such as marine or chemical applications. Another method of surface passivation is mechanical passivation, which involves physically altering the surface of the steel to create a protective barrier. This can be done through processes such as shot peening or sandblasting, which create a roughened surface that is less susceptible to corrosion. Mechanical passivation is commonly used in applications where the steel is exposed to abrasive or erosive environments, such as mining or oil drilling. Electrochemical passivation is another technique used to passivate special steel surfaces. It involves the use of an electric current to create a protective oxide layer on the surface of the steel. This can be done through processes such as electrochemical polishing or anodizing, which create a controlled oxidation of the steel's surface. Electrochemical passivation is often used in industries where the steel is exposed to high temperatures or aggressive chemical environments. In addition to these methods, there are also specialized surface treatments available for special steel, such as plasma or laser surface passivation. These techniques use highly concentrated energy sources to modify the surface of the steel, creating a protective layer that enhances its corrosion resistance and mechanical properties. These treatments are typically used in high-performance applications, such as aerospace or automotive industries. Overall, the choice of surface passivation method for special steel depends on the specific requirements of the application and the desired performance characteristics of the material. Each method has its advantages and limitations, and it is important to consider factors such as cost, time, and environmental impact when selecting the most suitable method for a particular application.
Q:What are the main applications of special steel in the power storage industry?
Special steel is widely used in the power storage industry for various applications. One of the main applications is in the manufacturing of battery components, where special steel is used to produce high-quality casings and connectors that ensure the safety and reliability of the batteries. Special steel is also utilized in the construction of power storage infrastructure, such as steel frames and supports for battery racks. Additionally, special steel is used in the production of power storage system components, like turbine blades, rotors, and stators, which are essential for efficient energy generation and storage. Overall, special steel plays a vital role in enhancing the performance, durability, and safety of power storage systems in the industry.
Q:What are the different international trade regulations for special steel?
The different international trade regulations for special steel vary depending on the specific country and region. These regulations may include import and export restrictions, tariffs, quotas, anti-dumping measures, quality standards, labeling requirements, and intellectual property rights protection. Additionally, special steel may be subject to specific regulations related to its use in certain industries such as aerospace or automotive. It is important for businesses involved in international trade of special steel to stay updated on these regulations to ensure compliance and smooth operations.
Q:Can special steel be used in the manufacturing of firearms?
Yes, special steel can definitely be used in the manufacturing of firearms. In fact, special steel is often preferred for this purpose due to its unique properties that make it suitable for withstanding high temperatures, pressures, and stress. Firearms require materials that are strong, durable, and able to handle the intense forces generated during firing. Special steel alloys, such as stainless steel or heat-treated steel, offer these desired characteristics and are commonly used in the production of firearm barrels, receivers, and other critical components. The use of special steel in firearms manufacturing ensures that the weapons are reliable, safe, and able to perform consistently under various conditions.
Q:What are the applications of special steel in the agriculture sector?
Special steel has various applications in the agriculture sector due to its exceptional properties such as durability, corrosion resistance, and strength. It is used in the manufacturing of farm equipment and machinery like tractors, plows, harrows, and combine harvesters. Special steel is also utilized in the construction of storage silos, irrigation systems, and animal housing structures. Additionally, it is employed in the production of cutting tools and blades for efficient crop harvesting and maintenance.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords