Hot Rolled Structure Steel Angle Bar Angle Steel JIS Standard GB Standard
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 30000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Product Description:
Specifications of Hot Rolled Angle Steel
1.Standards:GB,ASTM,BS,AISI,DIN,JIS
2. Invoicing on theoretical weight or actual weight as customer request3.Material:GBQ235B,Q345BorEquivalent;ASTMA36;EN10025,S235JR,S355JR;JISG3192,SS400;SS540.
4. Payment terms:
1).100% irrevocable L/C at sight.
2).30% T/T prepaid and the balance against the copy of B/L.
3).30% T/T prepaid and the balance against L/C
5.Sizes:
EQUAL ANGLES SIZES | |||
a(mm) | a1(mm) | thickness(mm) | length |
25 | 25 | 2.5---3.0 | 6M/12M |
30 | 30 | 2.5---4.0 | 6M/12M |
38 | 38 | 2.5 | 6M/12M |
38 | 38 | 3.0---5.0 | 6M/12M |
40 | 40 | 3.0---6.0 | 6M/12M |
50 | 50 | 3 | 6M/12M |
50 | 50 | 3.7---6.0 | 6M/9M/12M |
60 | 60 | 5.0---6.0 | 6M/9M/12M |
63 | 63 | 6.0---8.0 | 6M/9M/12M |
65 | 65 | 5.0---8.0 | 6M/9M/12M |
70 | 70 | 6.0---7.0 | 6M/9M/12M |
75 | 75 | 5.0---10.0 | 6M/9M/12M |
80 | 80 | 6.0---10.0 | 6M/9M/12M |
90 | 90 | 6.0---10.0 | 6M/9M/12M |
100 | 100 | 6.0---12.0 | 6M/9M/12M |
120 | 120 | 8.0-12.0 | 6M/9M/12M |
125 | 125 | 8.0---12.0 | 6M/9M/12M |
130 | 130 | 9.0-12.0 | 6M/9M/12M |
140 | 140 | 10.0-16.0 | 6M/9M/12M |
150 | 150 | 10---15 | 6M/9M/12M |
160 | 160 | 10---16 | 6M/9M/12M |
180 | 180 | 12---18 | 6M/9M/12M |
200 | 200 | 14---20 | 6M/9M/12M |
5. Material details:
Alloy No | Grade | Element (%) | |||||
C | Mn | S | P | Si | |||
Q235 | B | 0.12—0.20 | 0.3—0.7 | ≤0.045 | ≤0.045 | ≤0.3 | |
Alloy No | Grade | Yielding strength point( Mpa) | |||||
Thickness (mm) | |||||||
≤16 | >16--40 | >40--60 | >60--100 | ||||
≥ | |||||||
Q235 | B | 235 | 225 | 215 | 205 | ||
Alloy No | Grade | Tensile strength (Mpa) | Elongation after fracture (%) | ||||
Thickness (mm) | |||||||
≤16 | >16--40 | >40--60 | >60--100 | ||||
≥ | |||||||
Q235 | B | 375--500 | 26 | 25 | 24 | 23 |
Packaging & Delivery of Equal Steel Angle
1.Transportation: the goods are delivered by truck from mill to loading port, the maximum quantity can be loaded is around 40MTs by each truck. If the order quantity cannot reach the full truck loaded, the transportation cost per ton will be little higher than full load.
2.With bundles and load in 20 feet/40 feet container, or by bulk cargo, also we could do as customer's request.
3. Marks:
Color mark: There will be color marking on both end of the bundle for the cargo delivered by bulk vessel. That makes it easily to distinguish at the destination port.
Tag mark: There will be tag mark tied up on the bundles. The information usually including supplier logo and name, product name, made in China, shipping marks and other information request by the customer.
If loading by container the marking is not needed, but we will prepare it as customer request.
- Q: What are the welding techniques used for steel angles?
- Some common welding techniques used for steel angles include shielded metal arc welding (SMAW), gas metal arc welding (GMAW), and flux-cored arc welding (FCAW). These techniques are effective in joining steel angles due to their ability to provide strong and durable welds.
- Q: Are steel angles resistant to extreme weather conditions?
- Steel angles are known for their durability and strength, making them highly resistant to extreme weather conditions. These angles are typically made from hot-rolled steel, which is known for its excellent weathering properties. They have a high tensile strength and can withstand harsh conditions such as heavy rainfall, high winds, and extreme temperatures. Steel angles are also corrosion-resistant, which means they can withstand exposure to moisture and humidity without rusting or deteriorating. This makes them ideal for outdoor applications where they may be exposed to rain, snow, or other environmental factors. Furthermore, steel angles are highly stable and can maintain their shape and structural integrity even under extreme weather conditions. They are designed to provide support and stability to structures, making them ideal for use in buildings, bridges, and other infrastructure projects that need to withstand hurricanes, earthquakes, or other severe weather events. Overall, steel angles are an excellent choice for applications that require resistance to extreme weather conditions. Their strength, durability, and corrosion resistance make them a reliable and long-lasting option for outdoor structures.
- Q: Are there any environmental concerns associated with steel angles?
- Yes, there are several environmental concerns associated with steel angles. One of the main concerns is the production process of steel angles, which involves the extraction of iron ore, coal mining for coke production, and the emission of greenhouse gases during the steelmaking process. These activities contribute to deforestation, air pollution, and climate change. Additionally, the disposal of steel angles at the end of their life cycle can be problematic. Steel is not biodegradable and can take hundreds of years to decompose in landfills. Improper disposal of steel angles can lead to soil and water contamination, posing a risk to ecosystems and human health. Furthermore, the transportation of steel angles from production facilities to construction sites can contribute to carbon emissions and air pollution. The energy required for transportation increases the overall environmental impact of steel angles. To mitigate these environmental concerns, there are several strategies that can be adopted. Firstly, using recycled steel instead of virgin steel can significantly reduce the environmental footprint of steel angles. Additionally, implementing energy-efficient technologies in the steel production process can help minimize greenhouse gas emissions. Finally, responsible disposal and recycling of steel angles at the end of their life cycle can help reduce the environmental impact.
- Q: What are the common design codes or standards for steel angles?
- The common design codes or standards for steel angles include the American Institute of Steel Construction (AISC) 360, the European Standard EN 10056, and the British Standard BS EN 10056. These codes and standards provide guidelines for the design, fabrication, and installation of steel angles, ensuring structural integrity and safety.
- Q: What are the different methods for reinforcing steel angles?
- There are several methods for reinforcing steel angles, depending on the specific structural needs and design requirements. Some of the common methods include: 1. Welding: This is the most commonly used method for reinforcing steel angles. Welding involves joining two or more steel angles together using heat and pressure to create a strong and durable connection. It is important to ensure proper welding techniques and procedures are followed to maintain the integrity of the reinforcement. 2. Bolting: Another method for reinforcing steel angles is through the use of bolts. Bolts are inserted through holes in the angles and tightened to create a secure connection. This method is often used when the reinforcement needs to be adjustable or removable. 3. Riveting: Riveting is a traditional method for reinforcing steel angles. It involves inserting a pin or rivet through holes in the angles and securing it by deforming the end of the pin. This creates a strong and permanent connection between the angles. 4. Adhesive bonding: In some cases, adhesive bonding can be used to reinforce steel angles. This method involves applying a special adhesive to the surfaces of the angles and then pressing them together. The adhesive hardens and forms a strong bond between the angles. 5. Plate strengthening: When additional reinforcement is required, steel plates can be attached to the angles. These plates are typically welded or bolted to the angles to increase their strength and load-bearing capacity. 6. Reinforcing bars: Reinforcing bars, commonly known as rebar, can be used to reinforce steel angles. These bars are typically embedded into the concrete or masonry structure and extend into the angles to provide additional strength and support. It is important to consult with a structural engineer or design professional to determine the most appropriate method for reinforcing steel angles based on the specific project requirements and structural considerations.
- Q: Are steel angles suitable for use in high-rise buildings?
- Steel angles are indeed suitable for high-rise buildings. They are frequently utilized as structural elements in such buildings because of their exceptional strength, durability, and versatility. Due to their ability to endure heavy loads and provide structural support, steel angles are ideal for use in beams, columns, and bracing systems. Moreover, they can be easily fabricated and installed, resulting in efficient construction processes. Furthermore, steel angles can be tailored to fit specific structural requirements in terms of size and shape, allowing for flexibility in both design and construction. In conclusion, steel angles are a dependable and cost-effective option for high-rise buildings, as they possess the necessary strength and stability required for such structures.
- Q: Can steel angles be used in temporary or modular structures?
- Yes, steel angles can be used in temporary or modular structures. Steel angles are commonly used in construction due to their strength, versatility, and cost-effectiveness. They are often used to provide structural support and stability in various applications, including temporary or modular structures. Steel angles can be easily cut, welded, and bolted, making them suitable for assembling and disassembling temporary or modular structures. Additionally, steel angles can withstand heavy loads and provide excellent resistance against bending and twisting forces, ensuring the stability and safety of the structure.
- Q: How do steel angles perform in corrosive or acidic environments?
- Steel angles exhibit strong performance in environments that are corrosive or acidic, but their effectiveness is contingent upon the type of steel employed and the specific conditions of the environment. For instance, stainless steel angles possess exceptional resistance to corrosion and can endure exposure to acidic environments without substantial deterioration. This is due to their high chromium content, which generates a protective layer on the surface upon contact with oxygen, thereby impeding further corrosion. Conversely, carbon steel angles demonstrate heightened vulnerability to corrosion in corrosive or acidic environments. They lack the same degree of chromium content and protective layer, rendering them more susceptible to rusting and degradation when confronted with such circumstances. Consequently, in these scenarios, supplementary protective coatings or treatments, such as galvanization or painting, may be necessary to augment their corrosion resistance. Moreover, the severity and concentration of corrosive or acidic substances within the environment can also influence the performance of steel angles. Elevated concentrations of acids or corrosive substances can expedite the corrosion process, even for stainless steel angles. Consequently, it is essential to meticulously evaluate the specific environment and select the appropriate steel material and protective measures accordingly to ensure optimal performance and longevity in corrosive or acidic environments.
- Q: How do steel angles contribute to sustainable construction?
- Steel angles play a crucial role in sustainable construction in various ways. To begin with, steel possesses remarkable durability and longevity, resulting in structures built with steel angles having a longer lifespan compared to those constructed with alternative materials. As a result, the necessity for frequent repairs or replacements is reduced, thereby minimizing waste and lessening the overall environmental impact of construction. Furthermore, steel is an extremely recyclable material. When a structure reaches the end of its life cycle, steel angles can be effortlessly recycled and repurposed for other construction ventures. This diminishes the demand for new steel production, which consumes significant energy and can result in substantial carbon emissions. Moreover, steel angles offer architects and engineers design flexibility, enabling them to create more efficient and innovative structures. This can lead to optimized building designs that require less energy for heating, cooling, and maintenance, contributing to energy savings and a decrease in greenhouse gas emissions. Additionally, steel angles are lightweight yet remarkably sturdy, resulting in reduced material usage and transportation costs. Consequently, the overall carbon footprint associated with steel construction is lower compared to other materials. Furthermore, steel angles possess exceptional fire resistance properties, making them a safer choice for construction. This prolongs the lifespan of structures and diminishes the risk of damage or destruction during fires. As a result, the need for rebuilding or reconstructing is reduced, leading to less material waste and environmental impact. In conclusion, steel angles contribute to sustainable construction through their durability, recyclability, design flexibility, energy efficiency, lightweight nature, fire resistance, and overall reduced environmental impact. By incorporating steel angles into construction projects, we can create more sustainable and environmentally friendly structures that benefit both the present and future generations.
- Q: Are steel angles resistant to pests or insects?
- Yes, steel angles are resistant to pests or insects as they are made of solid, non-organic material, which does not provide a suitable environment for pests or insects to thrive.
Send your message to us
Hot Rolled Structure Steel Angle Bar Angle Steel JIS Standard GB Standard
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 30000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords