Hot Rolled Steel Equal Angles Q235, A36, SS400, 235JR for Construction
- Loading Port:
- China main port
- Payment Terms:
- TT or LC
- Min Order Qty:
- 25000 m.t.
- Supply Capability:
- 200000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specifications of Hot Rolled Steel Equal Angles Q235, A36, SS400, 235JR for Construction:
1. Standards: GB,ASTM,BS,AISI,DIN,JIS
2. Length:6m,9m,12m
3. Material:Material: GB Q235B, Q345B or Equivalent; ASTM A36; EN 10025, S235JR, S355JR; JIS G3192, SS400;
SS540.
4. Sizes:
Sizes: 25mm-250mm | ||
a*t | ||
25*2.5-4.0 | 70*6.0-9.0 | 130*9.0-15 |
30*2.5-6.6 | 75*6.0-9.0 | 140*10-14 |
36*3.0-5.0 | 80*5.0-10 | 150*10-20 |
38*2.3-6.0 | 90*7.0-10 | 160*10-16 |
40*3.0-5.0 | 100*6.0-12 | 175*12-15 |
45*4.0-6.0 | 110*8.0-10 | 180*12-18 |
50*4.0-6.0 | 120*6.0-15 | 200*14-25 |
60*4.0-8.0 | 125*8.0-14 | 250*25 |
5. Chemical data: %
C | Mn | S | P | Si |
0.14-0.22 | 0.30-0.65 | ≤0.050 | ≤0.045 | ≤0.30 |
Usage & Applications of Hot Rolled Steel Equal Angles Q235, A36, SS400, 235JR for Construction:
Trusses;
Transmission towers;
Telecommunication towers;
Bracing for general structures;
Stiffeners in structural use.
Packaging & Delivery of Hot Rolled Steel Equal Angles Q235, A36, SS400, 235JR for Construction:
1. Transportation: the goods are delivered by truck from mill to loading port, the maximum quantity can be loaded is around 40MTs by each truck. If the order quantity cannot reach the full truck loaded, the transportation cost per ton will be little higher than full load.
2. With bundles and load in 20 feet/40 feet container, or by bulk cargo, also we could do as customer's request.
3. Marks:
Color mark: There will be color marking on both end of the bundle for the cargo delivered by bulk vessel. That makes it easily to distinguish at the destination port.
Tag mark: There will be tag mark tied up on the bundles. The information usually including supplier logo and name, product name, made in China, shipping marks and other information request by the customer.
If loading by container the marking is not needed, but we will prepare it as customer request.
FAQ:
Q1: How do we guarantee the quality of our products?
A1: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.
Q2: How soon can we receive the product after purchase?
A2: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.
Q3: What makes stainless steel stainless?
A3: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.
Images:
- Q:What are the alternatives to steel angles in construction?
- There are several alternatives to steel angles in construction that offer different advantages and disadvantages depending on the specific application. 1. Aluminum angles: Aluminum angles are lightweight and corrosion-resistant, making them a popular choice for outdoor construction projects. They are also easily machinable and have good electrical conductivity. However, aluminum angles may not have the same strength and load-bearing capacity as steel angles, making them less suitable for heavy-duty structural applications. 2. Fiberglass angles: Fiberglass angles are lightweight, non-conductive, and highly resistant to corrosion and chemical damage. They are commonly used in industries where exposure to harsh environments, such as water or chemicals, is a concern. However, fiberglass angles may not have the same strength as steel angles and may require additional reinforcement for heavy loads. 3. Carbon fiber angles: Carbon fiber angles are lightweight, high-strength, and have excellent resistance to corrosion. They are commonly used in applications where weight reduction is critical, such as aerospace and automotive industries. However, carbon fiber angles tend to be more expensive than steel angles and may require specialized manufacturing techniques. 4. Wood angles: Wood angles, typically made from hardwood or engineered wood products, are a traditional alternative to steel angles in construction. They are readily available, cost-effective, and easy to work with. Wood angles are often used in residential and light commercial construction projects. However, wood angles may not have the same strength and durability as steel angles and may be more prone to warping, cracking, or rotting over time. It's important to consider the specific requirements of the construction project, including the load-bearing capacity, environmental conditions, and budget, when choosing an alternative to steel angles. Consulting with a structural engineer or construction professional can help determine the most suitable option for each specific scenario.
- Q:Are steel angles heat-treated?
- Steel angles are indeed capable of undergoing heat treatment. To modify the physical and mechanical properties of the steel, controlled heating and cooling processes are employed in heat treatment. This can yield various desirable attributes, such as enhanced strength, hardness, toughness, or improved machinability. When it comes to heat treating steel angles, commonly employed techniques include annealing, quenching, tempering, or normalizing. The selection of a specific heat treatment method is contingent upon the desired final properties and the intended application of the steel angles.
- Q:What are the different connection methods for steel angles?
- Some of the different connection methods for steel angles include welding, bolting, and using mechanical fasteners such as screws or rivets. These methods are used to join steel angles together or to connect them to other structural elements. The choice of connection method depends on factors such as the load requirements, the design specifications, and the ease of installation.
- Q:Are steel angles available in different lengths?
- Yes, steel angles are available in different lengths. Steel angles are commonly used in construction and manufacturing industries for various applications such as support structures, frames, and bracing. They are available in a range of standard lengths, typically ranging from 20 feet to 40 feet. However, it is also possible to find steel angles in custom lengths, depending on the specific requirements of a project. Different lengths allow for versatility and flexibility in design and construction, enabling engineers and architects to create structures that meet their specific needs.
- Q:What are the design standards for steel angles?
- The design standards for steel angles depend on the specific application and industry requirements. However, there are some general design standards that are commonly followed in the construction and engineering fields. One important aspect is the dimensional and mechanical properties of the steel angles. These properties include the angle's size, thickness, length, and weight. The dimensions are typically specified in millimeters or inches, and the mechanical properties determine the angle's strength and load-bearing capacity. In terms of shape, steel angles are typically L-shaped with equal or unequal legs. The equal-legged angles have two legs of the same length, while unequal-legged angles have two legs of different lengths. The angle's shape and geometry play a crucial role in determining its structural integrity and stability. Another important consideration is the material specification for the steel angles. The material used for fabrication should meet certain standards, such as the American Society for Testing and Materials (ASTM) specifications, to ensure the required strength, ductility, and toughness. Commonly used materials for steel angles include carbon steel, stainless steel, and alloy steel. The design standards for steel angles also include guidelines for connection details. These details specify the method of connecting the angles to other structural members, such as beams, columns, or plates. The connection details ensure proper load transfer and structural stability, and they may involve welding, bolting, or other mechanical fastening methods. Additionally, design standards may include guidelines for the design of steel angle members subjected to specific loads, such as axial compression, bending, or shear. These guidelines provide formulas, charts, and design tables that allow engineers to calculate the required size and strength of the angle based on the applied loads and other factors. Overall, the design standards for steel angles ensure that these structural members meet specific requirements in terms of dimensions, material properties, shape, and connection details. These standards help ensure the safety, reliability, and performance of steel angles in various applications, ranging from building construction to industrial machinery.
- Q:How do steel angles contribute to the seismic resilience of a structure?
- Steel angles are an essential component in enhancing the seismic resilience of a structure. These angled steel members are commonly used in construction to provide additional strength and stability, particularly in earthquake-prone areas. One way steel angles contribute to the seismic resilience of a structure is through their ability to resist lateral forces caused by seismic activities. During an earthquake, buildings are subjected to horizontal forces that can cause significant damage. Steel angles are strategically placed within the structure to help distribute and dissipate these forces, thus reducing the overall impact on the building. By acting as braces or stiffeners, steel angles enhance the structural integrity and prevent excessive deformation or collapse. Furthermore, steel angles are often used in conjunction with other seismic design strategies, such as moment frames or shear walls. These elements work together to create a robust and flexible structural system that can withstand the dynamic forces generated during an earthquake. Steel angles are typically integrated into these systems to provide additional reinforcement and increase the overall strength and rigidity of the structure. In addition to their role in resisting lateral forces, steel angles also contribute to the seismic resilience of a structure by improving its load-carrying capacity. By distributing loads more efficiently, steel angles help to reduce the stress on individual components, preventing localized failures and ensuring the overall stability of the structure. Moreover, steel angles are highly durable and possess excellent material properties, such as high tensile strength and toughness. This makes them well-suited for withstanding the dynamic loading and cyclic motions associated with earthquakes. Steel angles are also resistant to corrosion, which is crucial for maintaining the long-term structural integrity and overall performance of a building in seismic events. In conclusion, steel angles play a crucial role in enhancing the seismic resilience of a structure. By resisting lateral forces, improving load-carrying capacity, and providing durability, they contribute to the overall stability and integrity of the building. Incorporating steel angles into the design and construction process is essential for creating structures that can withstand seismic activities and ensure the safety of occupants.
- Q:How are steel angles defined?
- Steel angles are defined by their shape and dimensions. They are L-shaped structural members made of steel with two perpendicular legs of equal or unequal lengths. The angle between the legs can range from 90 to 180 degrees, depending on the specific design and application. Steel angles are commonly used in construction and engineering projects to provide structural support, reinforcement, and stability. The dimensions of steel angles are typically specified by their leg length, thickness, and overall length. These dimensions determine the strength, load-bearing capacity, and versatility of the angle, making it suitable for various applications in different industries. Steel angles are also available in various finishes, such as galvanized or painted, to enhance their durability and resistance to corrosion.
- Q:Can steel angles be used in the construction of museums?
- Yes, steel angles can be used in the construction of museums. Steel angles are commonly used as structural components in construction projects, including museums. They provide strength, stability, and versatility, making them suitable for various architectural and design requirements in museum construction.
- Q:Can steel angles be used as structural members?
- Yes, steel angles can be used as structural members. Steel angles are commonly used in construction and engineering projects to provide structural support and stability. They are often used to reinforce and strengthen various structures, such as buildings, bridges, and frameworks. Steel angles are known for their high strength and durability, making them an ideal choice for structural applications. They can be used in combination with other steel components or on their own to bear or distribute loads, support beams, and provide stability to the overall structure. Additionally, steel angles can be easily fabricated and installed, making them a versatile and cost-effective option for structural members in various construction projects.
- Q:How do you prevent galvanic corrosion in steel angles?
- To prevent galvanic corrosion in steel angles, there are a few measures that can be taken. 1. Proper coating: Applying a protective coating such as paint, epoxy, or galvanization can create a barrier between the steel angle and other metals. This prevents direct contact and minimizes the risk of galvanic corrosion. 2. Insulation: Using insulation materials such as rubber or plastic washers, gaskets, or sleeves can help isolate the steel angle from other metals. This prevents the flow of electrical currents and reduces the chances of galvanic corrosion. 3. Proper design considerations: When designing structures or systems that involve steel angles, it is important to consider the compatibility of different metals. Pairing metals with similar electrochemical properties can help minimize the risk of galvanic corrosion. 4. Regular maintenance: Regular inspections and maintenance of steel angles can help identify and address early signs of galvanic corrosion. This includes checking for any damage to the protective coating, ensuring proper insulation, and applying appropriate remedies if corrosion is detected. By implementing these preventive measures, the risk of galvanic corrosion in steel angles can be significantly reduced, ensuring their longevity and structural integrity.
1. Manufacturer Overview |
|
---|---|
Location | |
Year Established | |
Annual Output Value | |
Main Markets | |
Company Certifications |
2. Manufacturer Certificates |
|
---|---|
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability |
|
---|---|
a)Trade Capacity | |
Nearest Port | |
Export Percentage | |
No.of Employees in Trade Department | |
Language Spoken: | |
b)Factory Information | |
Factory Size: | |
No. of Production Lines | |
Contract Manufacturing | |
Product Price Range |
Send your message to us
Hot Rolled Steel Equal Angles Q235, A36, SS400, 235JR for Construction
- Loading Port:
- China main port
- Payment Terms:
- TT or LC
- Min Order Qty:
- 25000 m.t.
- Supply Capability:
- 200000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords