Hot rolled ribbed steel bars (HRB400E-500)
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 120000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Reinforcing bar (Rebar) refers to the use of reinforced concrete and prestressed concrete with steel, its cross section is round, sometimes for the square with rounded corners. Including light round bar, ribbed steel bar, torsion bar. Reinforced concrete with steel bar is refers to the reinforced concrete reinforcement with straight or plate of strip steel, its appearance is divided into two kinds, light round steel and deformed steel delivery status for the straight bar and wire rod in two. Light round bar is really a small round steel and ordinary low carbon steel wire rod. Deformation is surface ribbed steel bar, usually with 2 longitudinal and cross rib of uniform distribution along the length direction. The appearance of cross rib is spiral, chevron, crescent 3 kinds. With nominal diameter mm number representation. Equals the nominal diameter is equal to the cross section deformation of reinforced light round bar nominal diameter. Reinforcement of nominal diameter is 8-50 mm, recommends to the diameter of 8, 12, 16, 20, 25, 32 and 40 mm. Steel grade: 20 mnsi, 20 mnsi MNV, 25, BS20MnSi. Rebar in concrete main tensile stress. Deformed bars as a result of the action of rib, and concrete have larger bonding ability, thus better able to withstand the role of external force. Steel is widely used in various building structures. Especially large, heavy, light thin wall and high-rise building structure.
Steel processing, steel processing to table and design review, check the material list for errors and omissions, for each steel bar to press
Material list to check whether meet the requirements, after these two checks, then press the material list sent out samples, trial production of qualified rear can batch production, processing and good reinforcement to neatly stacked in order.
Construction such as the need to be reinforced by substitution, must fully understand the design intent and substitution material performance, strictly abide by the current design code of reinforced concrete rules, not to area such as the substitution of low strength of high strength steel reinforcement. Any important parts of a reinforced substitution, shall agree with the consent of party a, design unit, and have a written notice shall be substitution.
(1) the steel surface should be clean, sticky oil, dirt, rust must be cleaned before use, can be combined with cold-drawn rust removal process.
(2) reinforced straightening, usable mechanical or manual straightening. After straightening of steel can not have local small bending, die bending, wavy, its surface scars should not be made of steel decreases by 5%.
(3) the steel bar cutting should be according to the number, diameter, length and quantity, the length is tie-in, first cutting long expected, by cutting short expected to reduce short head, and shorten the steel to save steel.
(4) steel hook or bend:
1) steel hook. There are three kinds of forms, respectively semicircle hook, hook and hook. After bending, bend endothelial contraction, skin
Extension, axis length is constant, bend arc formation, size is greater than the baiting size after bending, bending modifier should be considered.
Reinforced bending diameter of 2.5 d heart, straight part for 3 d. Steel hook increase the length of the theoretical calculation value: counter rotating round hook is 6.25 d, the straight
Hook is 3.5 d, the hook is 4.9 d.
(2) the bending of steel. Middle bending diameter D bend, not less than five times the diameter of the reinforcing steel bar.
(3) the stirrup. Stirrups should be done at the end of the hook, hook form should meet the design requirements. Stirrup adjustment, is the hook to increase the length and bending adjustment
Value or the difference between the two and, according to the amount of stirrup outsourcing size or inside the package size.
(4) reinforced blanking length should be according to the component size, concrete cover thickness, rebar bend modifier and hook to increase the length of the provisions as comprehensive exam
Lv.
A. straight reinforced blanking length = member length - protective layer thickness increase length + hook,
B. turn up steel blanking length = straight length - bend modifier + + inclined curved length increase length of hook,
C. blanking length = stirrup stirrup inner perimeter + modifier + hook to increase length of stirrup.
- Q: What are the safety precautions to be followed while working with steel rebars?
- To prevent accidents and injuries while working with steel rebars, it is essential to adhere to specific safety measures. Consider the following precautions: 1. Personal Protective Equipment (PPE): Ensure that you always wear suitable PPE, including safety glasses, gloves, hard hats, and steel-toed boots. These items will shield you from potential dangers like falling objects, sharp edges, and flying debris. 2. Training and Knowledge: Before handling steel rebars, make sure you have undergone proper training and understand the associated safety protocols. Familiarize yourself with the equipment used and comprehend the potential risks involved. 3. Proper Lifting Techniques: Handling steel rebars can be challenging due to their weight and awkward shape. Always utilize correct lifting techniques, such as bending your knees and using your legs instead of your back. Do not attempt to lift a rebar that exceeds your capacity; seek assistance if necessary. 4. Secure Storage: Store steel rebars in a designated area that is free from potential obstructions. Stack them in a stable manner to prevent toppling and causing injuries. 5. Safe Handling: When moving steel rebars, exercise caution due to their sharp edges and potential for harm. Employ appropriate lifting equipment, such as cranes or forklifts, if required. Avoid dragging or sliding rebars, as this can lead to strains or sprains. 6. Fall Protection: If working at heights or near open edges, ensure that adequate fall protection measures are in place. This may involve using guardrails, safety harnesses, or safety nets to prevent falls. 7. Fire Safety: Steel rebars can become extremely hot when exposed to heat or flames. Ensure that appropriate fire prevention measures are in place, such as fire extinguishers, and exercise caution when working near flammable materials. 8. Communication: Maintain clear communication with colleagues and supervisors to ensure everyone is aware of their surroundings and potential hazards. Utilize hand signals or radios when working in noisy environments. 9. Regular Inspections: Routinely inspect steel rebars for any defects, such as cracks or sharp edges, that could pose a safety risk. Immediately remove any damaged or faulty rebars from use. 10. First Aid and Emergency Procedures: Familiarize yourself with first aid procedures and emergency protocols in the event of accidents or injuries. Have a well-stocked first aid kit readily available on-site and know the location of the nearest medical facility. By adhering to these safety precautions, you can minimize the likelihood of accidents and injuries while working with steel rebars. Always prioritize your safety and the safety of those around you.
- Q: How are steel rebars bent on-site?
- Steel rebars are bent on-site using specialized equipment such as hydraulic benders or manual bending machines. The rebars are carefully positioned and clamped into the bending machine, which then exerts necessary force to bend them to the desired angle or shape.
- Q: What is the minimum cover requirement for steel rebars in concrete?
- The minimum cover requirement for steel rebars in concrete is typically determined by building codes and structural design specifications. It can vary depending on factors such as the type of structure, environmental conditions, and the level of exposure to potential damage. However, a common guideline is to have a minimum cover of 1.5 inches (or 40 millimeters) for rebars in most reinforced concrete construction.
- Q: What is the maximum length of steel rebars that can be used in construction?
- Various factors, including building codes, project requirements, and practical limitations, influence the maximum length of steel rebars used in construction. Generally, rebars can be a few feet or several meters long. Common lengths typically range from 6 to 18 meters (20 to 60 feet), although longer rebars may be available for specific applications. To ensure structural integrity and safety, engineers, architects, and contractors must consult local building codes and regulations. These codes provide guidelines for construction materials, including steel rebars, and determine the maximum allowable length for a specific project.
- Q: How do steel rebars contribute to the overall sustainability of concrete structures?
- Steel rebars contribute to the overall sustainability of concrete structures in several ways. Firstly, they enhance the strength and durability of concrete, allowing structures to withstand heavy loads and harsh environmental conditions, thus reducing the need for frequent repairs or replacements. Secondly, steel rebars can be recycled, reducing the demand for new steel production and conserving natural resources. Additionally, the use of rebars enables the construction of taller and more efficient structures, optimizing the use of space and reducing the overall environmental footprint. Overall, steel rebars play a crucial role in enhancing the longevity, efficiency, and environmental friendliness of concrete structures.
- Q: Can steel rebars be used in structures with limited construction technology?
- Yes, steel rebars can be used in structures with limited construction technology. Steel rebars are commonly used as reinforcement in concrete structures to enhance their strength and durability. They are versatile and can be easily incorporated into various construction techniques, making them suitable for structures with limited technology. Additionally, steel rebars offer superior resistance to load and can withstand harsh environmental conditions, ensuring the structural integrity of the building even with limited construction technology.
- Q: What are the sizes available for steel rebars?
- Different construction needs can be accommodated by steel rebars, which are also known as reinforcing bars. Steel rebars are available in a range of sizes, typically from #3 to #18. Each size is assigned a corresponding number that represents the diameter of the bar in inches. For instance, a #3 rebar has a diameter of 3/8 inch, while a #18 rebar has a diameter of 2 1/4 inches. These sizes are universally standardized and widely utilized in construction projects around the world. The selection of a rebar size depends on various factors, including the structural requirements, load-bearing capacity, and specific engineering specifications of a particular project. The strength and load-bearing capacity of a rebar increase with its diameter. It should be noted that the availability of sizes may differ based on the region or country, as different standards and regulations may be followed. To determine the appropriate size of steel rebars to be used in a construction project, it is always advisable to consult local building codes and seek guidance from engineering professionals.
- Q: How do steel rebars affect the flexibility of a concrete structure?
- Steel rebars enhance the flexibility of a concrete structure by providing tensile strength. This reinforcement prevents cracking and increases the overall durability and load-bearing capacity of the structure.
- Q: How do steel rebars affect the overall construction cost of industrial buildings?
- Steel rebars can have a significant impact on the overall construction cost of industrial buildings. Rebars are used as reinforcement in concrete structures, providing strength and durability. The amount of steel rebars required in a building project directly affects the cost, as the price of steel is a major component of the overall construction expenses. Firstly, the quantity of rebars needed depends on the size, design, and complexity of the industrial building. Larger buildings or those with intricate architectural features may require a higher number of rebars, resulting in increased costs. Additionally, the design and engineering requirements for seismic or wind resistance can also influence the quantity of rebars, further impacting the construction budget. Moreover, the quality and grade of the steel rebars used can affect the cost. Higher-grade rebars, such as those with higher tensile strength or corrosion resistance, may be more expensive. However, using higher-grade rebars can provide long-term benefits by enhancing the structural integrity of the building and reducing maintenance and repair costs over its lifespan. Transportation and handling costs also contribute to the overall cost. Steel rebars are heavy and bulky, requiring careful handling and transportation to the construction site. The distance between the steel supplier and the site can significantly impact transportation costs. Additionally, the storage and protection of rebars on-site must be considered to ensure their quality, which may involve additional expenses. Lastly, labor costs associated with the installation of steel rebars should be taken into account. Skilled labor is required to correctly place and tie the rebars according to design specifications and building codes. The complexity of the reinforcement design can affect the time required for installation, ultimately influencing labor costs. In conclusion, steel rebars play a vital role in the construction of industrial buildings by reinforcing concrete structures. The quantity, quality, transportation, and labor costs associated with steel rebars directly impact the overall construction cost. Therefore, careful planning and consideration of these factors are necessary to effectively manage the budget of industrial building projects.
- Q: Can steel rebars be used in historical monument conservation?
- Yes, steel rebars can be used in historical monument conservation. Steel rebars are commonly used in the restoration and strengthening of historical structures as they provide structural support and ensure the stability and longevity of the monument. However, it is essential to carefully analyze the impact of their installation on the historical value and authenticity of the monument. The use of steel rebars should be done in a way that minimizes any visual or aesthetic alterations to the monument, while still ensuring its preservation.
Send your message to us
Hot rolled ribbed steel bars (HRB400E-500)
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 120000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords