• Hot rolled  deformed steel bar bar for construction System 1
  • Hot rolled  deformed steel bar bar for construction System 2
  • Hot rolled  deformed steel bar bar for construction System 3
Hot rolled  deformed steel bar bar for construction

Hot rolled deformed steel bar bar for construction

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
10000 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Standard:
AISI,JIS,GB,DIN,EN,ASTM
Technique:
Hot Rolled,ERW,Spring
Shape:
U Channel,Square,Round,Rectangular
Surface Treatment:
Galvanized,Coated,Color Coated,Dry
Steel Grade:
Q235,Q235B,HRB400,SS400-SS490
Thickness:
100
Length:
6
Net Weight:
100

 OKorder is offering high quality GR40 deformed steel bar bar for construction at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

GR40 deformed steel bar bar for construction for construction for construction are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

 

 

 

OKorder's  deformed steel bar are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

Hot rolled  deformed steel bar bar for construction

.jpg

.jpg

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Specifications of Deformed Steel Bar ASTM A615 GR40 GR60 with High Quality:

Standard

GB

HRB335, HRB400, HRB500

UK

G460B, B500A, B500B,B500C

USA

GR40, GR60

Diameter

6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm,

22mm,25mm,28mm,32mm,36mm,40mm,50mm

Length

6M, 9M,12M or as required

Place of origin

Hebei, China mainland

Application

building,construction,road,bridge etc

Brand name

DRAGON

Theoretical weight and section area of each diameter as below for your information:

Diameter(mm)

Section area (mm²)

Mass(kg/m)

6

28.27

0.222

8

50.27

0.395

10

78.54

0.617

12

113.1

0.888

14

153.9

1.21

16

201.1

1.58

18

254.5

2.00

20

314.2

2.47

22

380.1

2.98

25

490.9

3.85

28

615.8

4.83

32

804.2

6.31

36

1018

7.99

40

1257

9.87

50

1964

15.42

 

Usage and Applications of Deformed Steel Bar ASTM A615 GR40 GR60 with High Quality:

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy  and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy  and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..

Packaging & Delivery of HRB400 Deformed Steel Bar:

Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.

Each bundle weight: 2-3MT, or as required

Payment term: TT or L/C

Delivery Detail: within 45 days after received advanced payment or LC.

Label: to be specified by customer, generally, each bundle has 1-2 labels

Trade terms: FOB, CFR, CIF

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: What makes stainless steel stainless?

A2: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

 

 

Q: Are steel rebars easy to handle and install on-site?
Yes, steel rebars are generally easy to handle and install on-site. They are lightweight, durable, and come in various lengths and sizes, making them convenient to work with. Additionally, their ribbed surface provides better adhesion with concrete, ensuring a secure installation.
Q: 25 screw steel, how many meters per meter?
Ordinary hot rolled steel bars are made up of HRB and the minimum yield point of the brand. H, R, and B are the first letters in English for hot-rolled (Hotrolled), ribbed (Ribbed) and reinforced (Bars) three words.
Q: How do steel rebars enhance the structural integrity of a building?
In several ways, the structural integrity of a building is enhanced by steel rebars. Firstly, they reinforce and support concrete structures, including beams, columns, and slabs, preventing cracking or collapsing under heavy loads or external forces. The high tensile strength of steel rebars enables them to bear tensile stresses that concrete alone cannot handle, guaranteeing the building's stability and durability. Furthermore, steel rebars aid in evenly distributing and transferring loads throughout the structure, reducing concentrated stress. By reinforcing critical areas prone to tension, like corners, joints, and openings, rebars prevent cracks and ensure overall stability. Steel rebars also play a vital role in improving the structure's resistance to natural disasters like earthquakes and hurricanes. The flexibility and ductility of steel allow it to absorb and dissipate energy during seismic events or high winds, minimizing the risk of structural failure. This increased resilience ensures occupant safety and protects the building from severe damage. Additionally, steel rebars offer long-term durability by shielding the structure against corrosion. Unlike other construction materials, steel is highly resistant to degradation caused by environmental factors like moisture, chemicals, and temperature fluctuations. Corrosion-resistant rebars or protective coatings can significantly extend the building's lifespan. In conclusion, steel rebars are crucial components for reinforcing concrete structures, strengthening their integrity, stability, and resilience. By providing additional support and resistance to various stresses and loads, they contribute to the overall structural integrity of a building, guaranteeing its safety, longevity, and ability to withstand adverse conditions.
Q: What are the guidelines for the proper anchoring of steel rebars in walls?
The proper anchoring of steel rebars in walls is crucial to ensure the structural integrity and stability of the construction. Here are some guidelines to follow for the correct anchoring of steel rebars in walls: 1. Determine the required rebar size and spacing: The size and spacing of rebars depend on the design specifications and load requirements. Consult the structural engineer or refer to the building codes for the appropriate rebar size and spacing. 2. Clean and prepare the concrete surfaces: Before anchoring the rebars, ensure that the concrete surfaces are clean, free from dust, debris, and any loose material. Use a wire brush or compressed air to remove any contaminants. 3. Use proper anchoring techniques: The most common method for anchoring steel rebars in walls is by embedding them into the concrete. Ensure that the rebars are securely embedded by following these steps: a. Drill holes: Drill holes in the concrete wall at the specified locations and depths, ensuring that the diameter of the hole matches the rebar size. b. Clean the drilled holes: Remove any dust or debris from the drilled holes using compressed air or a brush. c. Insert rebars: Insert the rebars into the drilled holes, making sure they reach the required embedment depth. d. Proper spacing: Maintain the specified spacing between rebars based on the design requirements. e. Secure rebars: Use appropriate anchoring materials like epoxy resin or grout to secure the rebars in place. Follow the manufacturer's instructions for mixing and applying the anchoring material. f. Ensure proper alignment: Verify that the rebars are correctly aligned, both horizontally and vertically, before the anchoring material sets. 4. Allow sufficient curing time: After anchoring the rebars, allow sufficient time for the anchoring material to cure. This ensures that the rebars are firmly secured in place. 5. Properly protect the rebars: Once the rebars are anchored, protect them from corrosion by applying a suitable corrosion-resistant coating or using corrosion-resistant rebars. It is essential to follow these guidelines, as improper anchoring of steel rebars can compromise the structural integrity of the walls and pose safety risks. Always consult with a qualified structural engineer or building professional for specific guidelines tailored to your project.
Q: Can steel rebars be painted or coated?
Yes, steel rebars can be painted or coated. Painting or coating steel rebars is a common practice in construction and engineering to provide protection against corrosion and to enhance their aesthetic appearance. The process involves applying a layer of paint or coating material onto the surface of the rebars. This coating acts as a barrier, preventing moisture and other corrosive elements from reaching the steel surface, thus prolonging the lifespan of the rebars. Additionally, painting or coating the rebars can also help in differentiating them from other construction materials or providing color-coding for identification purposes. It is important to use high-quality paint or coating materials that are specifically designed for steel applications to ensure proper adhesion and durability.
Q: How do steel rebars contribute to the ductility of reinforced concrete structures?
Steel rebars contribute to the ductility of reinforced concrete structures in several ways. Ductility refers to a material's ability to deform under stress without fracturing. In the case of reinforced concrete structures, steel rebars provide the necessary tensile strength that concrete lacks, enabling the structure to withstand the forces of tension and compression. Firstly, steel rebars effectively resist tensile forces. Concrete is strong in compression but weak in tension. By adding steel rebars within the concrete, the structure gains the ability to withstand tensile stresses. When the concrete is subjected to tension, the rebars carry the load and prevent the concrete from cracking or failing. This enhances the overall ductility of the structure by allowing it to deform and absorb energy without catastrophic failure. Secondly, steel rebars act as reinforcement by distributing applied loads across a wider area. When a reinforced concrete structure is subjected to a load, the stress is transferred from the concrete to the rebars. The rebars distribute this stress throughout the structure, reducing localized concentrations and preventing sudden failure. This redistribution of stress promotes the ductility of the structure by enabling it to flex and absorb energy, rather than experiencing brittle failure. Moreover, steel rebars also provide anchorage and confinement to the concrete. The rebars are typically embedded in the concrete, creating a bond between the two materials. This bond enhances the overall strength and ductility of the structure by preventing the rebars from slipping or pulling out under tension. Additionally, the confinement effect of the rebars prevents the concrete from expanding or spalling under stress, increasing the overall ductility of the reinforced concrete structure. In summary, steel rebars contribute to the ductility of reinforced concrete structures by providing tensile strength, redistributing stress, and offering anchorage and confinement to the concrete. By reinforcing the weak areas of the concrete and allowing for controlled deformation, steel rebars enable the structure to absorb energy and withstand external forces without catastrophic failure.
Q: Can steel rebars be used in the construction of residential communities?
Yes, steel rebars can be used in the construction of residential communities. Steel rebars are commonly used in the construction industry for reinforcing concrete structures, including residential buildings. They provide strength and durability to the concrete, improving its load-bearing capacity and resistance to cracks and other forms of structural damage. Steel rebars are often used in residential construction to reinforce foundation footings, walls, columns, and beams. They help to ensure the structural integrity of the building, making it safer and longer-lasting. Additionally, steel rebars can be easily customized and shaped to fit specific design requirements, allowing for flexibility in construction. Overall, the use of steel rebars in residential communities is a common and widely accepted practice in the construction industry.
Q: How do steel rebars affect the overall constructability of a project?
Steel rebars have a significant impact on the overall constructability of a project. These reinforcing bars, commonly known as rebars, play a crucial role in enhancing the strength, durability, and stability of concrete structures. They are instrumental in mitigating the tensile forces that concrete alone cannot withstand, thereby increasing the overall load-bearing capacity of the structure. Firstly, steel rebars simplify the construction process by providing a framework for pouring and shaping concrete. They act as a skeletal structure that holds the concrete in place during the curing process, ensuring that it sets properly and takes the desired shape. This contributes to the overall efficiency of construction projects, as it allows for faster concrete placement and reduces the risk of structural deformities. Moreover, rebars enhance the structural integrity of the project. By reinforcing the concrete, they improve its ability to resist cracking, bending, and breaking under various loads and environmental conditions. This increased strength and resilience make the structure more durable and reduce the need for frequent repairs or maintenance, ultimately saving time and costs in the long run. In addition to strength and durability, steel rebars also enhance the constructability of a project by enabling flexibility in design. With rebars, architects and engineers have the freedom to create complex and innovative structures, such as high-rise buildings, bridges, and tunnels, that require high load-bearing capacities. The versatility of rebars allows for the construction of structures with unique shapes, curves, and spans, expanding the possibilities of architectural design. Furthermore, steel rebars facilitate constructability by enabling the construction of large-scale projects. The use of rebars allows for the creation of reinforced concrete elements, such as columns, beams, and slabs, which can support heavy loads and distribute them evenly throughout the structure. This capability is particularly crucial for projects that require significant weight-bearing capacity, such as industrial buildings or infrastructure projects. Overall, steel rebars have a profound impact on the constructability of a project. They simplify the construction process, enhance structural integrity, enable flexibility in design, and facilitate the construction of large-scale projects. By incorporating rebars into concrete structures, construction professionals can ensure that their projects are stronger, more durable, and better equipped to withstand various loads and environmental conditions.
Q: How do steel rebars contribute to the durability of concrete?
Steel rebars contribute to the durability of concrete by providing reinforcement and strength to the structure. When embedded in concrete, rebars help to counteract tensile forces, which are the forces that tend to pull apart the concrete. This prevents cracking and enhances the structural integrity of concrete, making it more resistant to various external factors such as heavy loads, seismic activity, and temperature changes. Additionally, rebars help to distribute stress evenly throughout the concrete, reducing the risk of localized damage and increasing the overall longevity of the structure.
Q: What is the effect of steel rebars on the electrical conductivity of concrete?
Concrete's electrical conductivity is significantly influenced by steel rebars. The inclusion of steel rebars in concrete enhances its overall electrical conductivity as steel is an excellent conductor. This is because steel rebars create a network of conductive paths within the concrete, facilitating the smooth flow of electrical current. Considering the electrical conductivity of concrete is crucial, particularly in situations that necessitate electrical grounding or conductivity. Steel rebars play a vital role in establishing a low-resistance pathway for electrical current, enhancing the overall electrical conductivity of the concrete structure. Nevertheless, it is important to acknowledge that the presence of steel rebars can pose challenges in certain scenarios. For instance, in electrical installations requiring insulation or areas where electrical isolation is essential, the conductivity provided by steel rebars may not be desired. In such cases, additional measures such as insulation or isolation techniques must be employed to prevent undesired electrical currents from traversing through the concrete. In conclusion, the impact of steel rebars on the electrical conductivity of concrete is contingent upon the specific requirements and applications of the concrete structure. A thorough understanding of the intended use and the implementation of appropriate measures will ensure that the electrical conductivity of the concrete meets the desired specifications.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords